Download Free Logic Locking Book in PDF and EPUB Free Download. You can read online Logic Locking and write the review.

With the popularity of hardware security research, several edited monograms have been published, which aim at summarizing the research in a particular field. Typically, each book chapter is a recompilation of one or more research papers, and the focus is on summarizing the state-of-the-art research. Different from the edited monograms, the chapters in this book are not re-compilations of research papers. The book follows a pedagogical approach. Each chapter has been planned to emphasize the fundamental principles behind the logic locking algorithms and relate concepts to each other using a systematization of knowledge approach. Furthermore, the authors of this book have contributed to this field significantly through numerous fundamental papers.
This book demonstrates the breadth and depth of IP protection through logic locking, considering both attacker/adversary and defender/designer perspectives. The authors draw a semi-chronological picture of the evolution of logic locking during the last decade, gathering and describing all the DO’s and DON’Ts in this approach. They describe simple-to-follow scenarios and guide readers to navigate/identify threat models and design/evaluation flow for further studies. Readers will gain a comprehensive understanding of all fundamentals of logic locking.
A subtle change that leads to disastrous consequences—hardware Trojans undoubtedly pose one of the greatest security threats to the modern age. How to protect hardware against these malicious modifications? One potential solution hides within logic locking; a prominent hardware obfuscation technique. In this book, we take a step-by-step approach to understanding logic locking, from its fundamental mechanics, over the implementation in software, down to an in-depth analysis of security properties in the age of machine learning. This book can be used as a reference for beginners and experts alike who wish to dive into the world of logic locking, thereby having a holistic view of the entire infrastructure required to design, evaluate, and deploy modern locking policies.
This book is about security in embedded systems and it provides an authoritative reference to all aspects of security in system-on-chip (SoC) designs. The authors discuss issues ranging from security requirements in SoC designs, definition of architectures and design choices to enforce and validate security policies, and trade-offs and conflicts involving security, functionality, and debug requirements. Coverage also includes case studies from the “trenches” of current industrial practice in design, implementation, and validation of security-critical embedded systems. Provides an authoritative reference and summary of the current state-of-the-art in security for embedded systems, hardware IPs and SoC designs; Takes a "cross-cutting" view of security that interacts with different design and validation components such as architecture, implementation, verification, and debug, each enforcing unique trade-offs; Includes high-level overview, detailed analysis on implementation, and relevant case studies on design/verification/debug issues related to IP/SoC security.
This book presents best selected research papers presented at the International Conference on Computer Networks, Big Data and IoT (ICCBI 2020), organized by Vaigai College Engineering, Madurai, Tamil Nadu, India, during 15–16 December 2020. The book covers original papers on computer networks, network protocols and wireless networks, data communication technologies and network security. The book is a valuable resource and reference for researchers, instructors, students, scientists, engineers, managers and industry practitioners in those important areas.
This book provides an overview of emerging topics in the field of hardware security, such as artificial intelligence and quantum computing, and highlights how these technologies can be leveraged to secure hardware and assure electronics supply chains. The authors are experts in emerging technologies, traditional hardware design, and hardware security and trust. Readers will gain a comprehensive understanding of hardware security problems and how to overcome them through an efficient combination of conventional approaches and emerging technologies, enabling them to design secure, reliable, and trustworthy hardware.
This book is a single-source solution for anyone who is interested in exploring emerging reconfigurable nanotechnology at the circuit level. It lays down a solid foundation for circuits based on this technology having considered both manual as well as automated design flows. The authors discuss the entire design flow, consisting of both logic and physical synthesis for reconfigurable nanotechnology-based circuits. The authors describe how transistor reconfigurable properties can be exploited at the logic level to have a more efficient circuit design flow, as compared to conventional design flows suited for CMOS. Further, the book provides insights into hardware security features that can be intrinsically developed using the runtime reconfigurable features of this nanotechnology.