Download Free Logic For Programming Artificial Intelligence And Reasoning Book in PDF and EPUB Free Download. You can read online Logic For Programming Artificial Intelligence And Reasoning and write the review.

This book constitutes the proceedings of the 20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR-20, held in November 2015, in Suva, Fiji. The 43 regular papers presented together with 1 invited talk included in this volume were carefully reviewed and selected from 92 submissions. The series of International Conferences on Logic for Programming, Artificial Intelligence and Reasoning, LPAR, is a forum where, year after year, some of the most renowned researchers in the areas of logic, automated reasoning, computational logic, programming languages and their applications come to present cutting-edge results, to discuss advances in these fields, and to exchange ideas in a scientifically emerging part of the world.
This book constitutes the proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-19, held in December 2013 in Stellenbosch, South Africa. The 44 regular papers and 8 tool descriptions and experimental papers included in this volume were carefully reviewed and selected from 152 submissions. The series of International Conferences on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) is a forum where year after year, some of the most renowned researchers in the areas of logic, automated reasoning, computational logic, programming languages and their applications come to present cutting-edge results, to discuss advances in these fields and to exchange ideas in a scientifically emerging part of the world.
This book constitutes the refereed proceedings of the 9th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR 2002, held in Tbilisi, Georgia in October 2002.The 30 revised full papers presented were carefully reviewed and selected from 68 submissions. Among the topics covered are constraint programming, formal software enginering, formal verification, resolution, unification, proof planning, agent splitting, binary decision diagrams, binding, linear logic, Isabelle theorem prover, guided reduction, etc.
Although Inductive Logic Programming (ILP) is generally thought of as a research area at the intersection of machine learning and computational logic, Bergadano and Gunetti propose that most of the research in ILP has in fact come from machine learning, particularly in the evolution of inductive reasoning from pattern recognition, through initial approaches to symbolic machine learning, to recent techniques for learning relational concepts. In this book they provide an extended, up-to-date survey of ILP, emphasizing methods and systems suitable for software engineering applications, including inductive program development, testing, and maintenance. Inductive Logic Programming includes a definition of the basic ILP problem and its variations (incremental, with queries, for multiple predicates and predicate invention capabilities), a description of bottom-up operators and techniques (such as least general generalization, inverse resolution, and inverse implication), an analysis of top-down methods (mainly MIS and FOIL-like systems), and a survey of methods and languages for specifying inductive bias. Logic Programming series
Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.
This is the second in a series of workshops that are bringing together researchers from the theoretical end of both the logic programming and artificial intelligence communities to discuss their mutual interests. This workshop emphasizes the relationship between logic programming and non-monotonic reasoning.Luis' Moniz Pereira is Professor in the Department of Computer Science at the Universidade Nova Lisboa, Portugal. Anil Nerode is Professor and Director of the Mathematical Sciences Institute at Cornell University.Topics include: Stable Semantics. Autoepistemic Logic. Abduction. Implementation Issues. Well-founded Semantics. Truth Maintenance. Probabilistic Theories. Applications. Default Logic. Diagnosis. Complexity and Theory. Handling Inconsistency.
The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.
An introduction to Prolog programming for artificial intelligence covering both basic and advanced AI material. A unique advantage to this work is the combination of AI, Prolog and Logic. Each technique is accompanied by a program implementing it. Seeks to simplify the basic concepts of logic programming. Contains exercises and authentic examples to help facilitate the understanding of difficult concepts.
The Handbook of Logic in Artificial Intelligence and Logic Programming is a multi-volume work covering all major areas of the application of logic to artificial intelligence and logic programming. The authors are chosen on an international basis and are leaders in the fields covered. Volume 5 is the last in this well-regarded series. Logic is now widely recognized as one of the foundational disciplines of computing. It has found applications in virtually all aspects of the subject, from software and hardware engineering to programming languages and artificial intelligence. In response to the growing need for an in-depth survey of these applications the Handbook of Logic in Artificial Intelligence and its companion, the Handbook of Logic in Computer Science have been created. The Handbooks are a combination of authoritative exposition, comprehensive survey, and fundamental research exploring the underlying themes in the various areas. Some mathematical background is assumed, and much of the material will be of interest to logicians and mathematicians. Volume 5 focuses particularly on logic programming. The chapters, which in many cases are of monograph length and scope, emphasize possible unifying themes.
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.