Download Free Logic And Integer Programming Book in PDF and EPUB Free Download. You can read online Logic And Integer Programming and write the review.

Paul Williams, a leading authority on modeling in integer programming, has written a concise, readable introduction to the science and art of using modeling in logic for integer programming. Written for graduate and postgraduate students, as well as academics and practitioners, the book is divided into four chapters that all avoid the typical format of definitions, theorems and proofs and instead introduce concepts and results within the text through examples. References are given at the end of each chapter to the more mathematical papers and texts on the subject, and exercises are included to reinforce and expand on the material in the chapter. Methods of solving with both logic and IP are given and their connections are described. Applications in diverse fields are discussed, and Williams shows how IP models can be expressed as satisfiability problems and solved as such.
Als Ergänzung zu den mehr praxisorientierten Büchern, die auf dem Gebiet der linearen und Integerprogrammierung bereits erschienen sind, beschreibt dieses Werk die zugrunde liegende Theorie und gibt einen Überblick über wichtige Algorithmen. Der Autor diskutiert auch Anwendungen auf die kombinatorische Optimierung; neben einer ausführlichen Bibliographie finden sich umfangreiche historische Anmerkungen.
A logic view of 0-1 integer programming problems, providing new insights into the structure of problems that can lead the researcher to more effective solution techniques depending on the problem class. Operations research techniques are integrated into a logic programming environment. The first monographic treatment that begins to unify these two methodological approaches. Logic-based methods for modelling and solving combinatorial problems have recently started to play a significant role in both theory and practice. The application of logic to combinatorial problems has a dual aspect. On one hand, constraint logic programming allows one to declaratively model combinatorial problems over an appropriate constraint domain, the problems then being solved by a corresponding constraint solver. Besides being a high-level declarative interface to the constraint solver, the logic programming language allows one also to implement those subproblems that cannot be naturally expressed with constraints. On the other hand, logic-based methods can be used as a constraint solving technique within a constraint solver for combinatorial problems modelled as 0-1 integer programs.
This monograph is based on a series of lectures given by the author at the first Advanced Research Institute on Discrete Applied Mathematics, held at Rutgers University. It emphasizes connections between the representational aspects of mixed integer programming and applied logic, as well as discussing logic-based approaches to decision support which help to create more `intelligent' systems. Dividing naturally into two parts, the first four chapters are an overview of mixed-integer programming representability techniques. This is followed by five chapters on applied logic, expert systems, logic and databases, and complexity theory. It concludes with a summary of open research issues and an attempt to extrapolate trends in this rapidly developing area.
Constraint and Integer Programming presents some of the basic ideas of constraint programming and mathematical programming, explores approaches to integration, brings us up to date on heuristic methods, and attempts to discern future directions in this fast-moving field.
This hands-on tutorial text for non-experts demonstrates biological applications of a versatile modeling and optimization technique.
Branch and bound experiments in 0-1 programming; A subadditive approach to the group problem of integer programming; Two computationaly difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems; Lagrangean relaxation for integer programming; A heuristic algorithm for mixed-integer programming problems; On the group problem for mixed integer programming; Experiments in the formulation of integer programming problems.
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.