Download Free Logic Algebra And Computation Book in PDF and EPUB Free Download. You can read online Logic Algebra And Computation and write the review.

The Marktoberdorf Summer Schools on Informatics were started in 1970, with the intention to convene every second or third year a group of top researchers in computing, devoted to preach their most recent results to an elite of advanced students - young and most promising people - and prepared to stand their questions, criticism and suggestions. The themes of these Advanced Study In stitutes under the sponsorship of the NATO Scientific Affairs Division varied slightly over the years, oscillating more or less around Programming Methodo logy, as the following list shows: 1970 Data Structures and Computer Systems 1971 Program Structures and Fundamental Concepts of Programming 1973 Structured Programming and Programmed Structures 1975 Language Hierarchies and Interfaces 1978 Program Construction 1981 Theoretical Foundations of Programming Methodology 1984 Control Flow and Data Flow: Concepts of Distributed Programming 1986 Logic of Programming and Calculi of Discrete Design 1988 Constructive Methods in Computing Science 1989 Logic, Algebra, and Computation Logic, Algebra, and Computation is the theme of the summer school to which this volume is devoted. It is the tenth in succession, but it is also the first in a new series (the "blue" series) that is intended to alternate in future with the traditional (the "red" series) arrangement; in fact the tenth summer school in the "red" series with the title "Programming and Mathematical Method" , held in 1990, was the subject of celebrating both its serial number and the twenty years of Marktoberdorf Summer Schools altogether.
ACM Monograph Series: A Computational Logic focuses on the use of induction in proving theorems, including the use of lemmas and axioms, free variables, equalities, and generalization. The publication first elaborates on a sketch of the theory and two simple examples, a precise definition of the theory, and correctness of a tautology-checker. Topics include mechanical proofs, informal development, formal specification of the problem, well-founded relations, natural numbers, and literal atoms. The book then examines the use of type information to simplify formulas, use of axioms and lemmas as rewrite rules, and the use of definitions. Topics include nonrecursive functions, computing values, free variables in hypothesis, infinite backwards chaining, infinite looping, computing type sets, and type prescriptions. The manuscript takes a look at rewriting terms and simplifying clauses, eliminating destructors and irrelevance, using equalities, and generalization. Concerns include reasons for eliminating isolated hypotheses, precise statement of the generalization heuristic, restricting generalizations, precise use of equalities, and multiple destructors and infinite looping. The publication is a vital source of data for researchers interested in computational logic.
This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Introductory treatment begins with set theory and fundamentals of Boolean algebra, proceeding to concise accounts of applications to symbolic logic, switching circuits, relay circuits, binary arithmetic, and probability theory. 1961 edition.
An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
Concise text begins with overview of elementary mathematical concepts and outlines theory of Boolean algebras; defines operators for elimination, division, and expansion; covers syllogistic reasoning, solution of Boolean equations, functional deduction. 1990 edition.
This book bridges the gaps between logic, mathematics and computer science by delving into the theory of well-quasi orders, also known as wqos. This highly active branch of combinatorics is deeply rooted in and between many fields of mathematics and logic, including proof theory, commutative algebra, braid groups, graph theory, analytic combinatorics, theory of relations, reverse mathematics and subrecursive hierarchies. As a unifying concept for slick finiteness or termination proofs, wqos have been rediscovered in diverse contexts, and proven to be extremely useful in computer science. The book introduces readers to the many facets of, and recent developments in, wqos through chapters contributed by scholars from various fields. As such, it offers a valuable asset for logicians, mathematicians and computer scientists, as well as scholars and students.