Download Free Locomotion And Energetics In Arthropods Book in PDF and EPUB Free Download. You can read online Locomotion And Energetics In Arthropods and write the review.

At the 1980 Christmas meetings of the American Society of zoologists in Seattle, Washington, the Division of Comparative Physiology and Biochemistry sponsored a symposium on the locomo tion and exercise of arthropods. This book is an outgrowth of that symposium. To our knowledge, the symposium and this volume are the first attempts to deal with all of the major modes of locomotion (flight, swimming, and pedestrian travel) among the arthropods in a comprehensive fashion. The time seems propitious to focus on arthropod locomotion. In the last decade enormous strides have been made in understand ing locomotion - both arthropod and vertebrate alike. There has been an explosion of new ideas, new techniques, and new data. These deserve greater attention and discussion than is possible in specialized journals. Hopefully this book will fill this gap; moreover, it should serve as a benchmark for newcomers to see what has happened to date and perhaps act as a launching pad for re search to come. Whatever the case, a symposium volume such as this serves to highlight our current strengths and weaknesses. In the present case it reveals the relative abundance of information on flying and walking and the dearth of data available on swimming; it exposes the fact that insects and crustaceans are fairly well studied and arachnids are not.
At the 1980 Christmas meetings of the American Society of zoologists in Seattle, Washington, the Division of Comparative Physiology and Biochemistry sponsored a symposium on the locomo tion and exercise of arthropods. This book is an outgrowth of that symposium. To our knowledge, the symposium and this volume are the first attempts to deal with all of the major modes of locomotion (flight, swimming, and pedestrian travel) among the arthropods in a comprehensive fashion. The time seems propitious to focus on arthropod locomotion. In the last decade enormous strides have been made in understand ing locomotion - both arthropod and vertebrate alike. There has been an explosion of new ideas, new techniques, and new data. These deserve greater attention and discussion than is possible in specialized journals. Hopefully this book will fill this gap; moreover, it should serve as a benchmark for newcomers to see what has happened to date and perhaps act as a launching pad for re search to come. Whatever the case, a symposium volume such as this serves to highlight our current strengths and weaknesses. In the present case it reveals the relative abundance of information on flying and walking and the dearth of data available on swimming; it exposes the fact that insects and crustaceans are fairly well studied and arachnids are not.
How can geckoes walk on the ceiling and basilisk lizards run over water? What are the aerodynamic effects that enable small insects to fly? What are the relative merits of squids' jet-propelled swimming and fishes' tail-powered swimming? Why do horses change gait as they increase speed? What determines our own vertical leap? Recent technical advances have greatly increased researchers' ability to answer these questions with certainty and in detail. This text provides an up-to-date overview of how animals run, walk, jump, crawl, swim, soar, hover, and fly. Excluding only the tiny creatures that use cilia, it covers all animals that power their movements with muscle--from roundworms to whales, clams to elephants, and gnats to albatrosses. The introduction sets out the general rules governing all modes of animal locomotion and considers the performance criteria--such as speed, endurance, and economy--that have shaped their selection. It introduces energetics and optimality as basic principles. The text then tackles each of the major modes by which animals move on land, in water, and through air. It explains the mechanisms involved and the physical and biological forces shaping those mechanisms, paying particular attention to energy costs. Focusing on general principles but extensively discussing a wide variety of individual cases, this is a superb synthesis of current knowledge about animal locomotion. It will be enormously useful to advanced undergraduates, graduate students, and a range of professional biologists, physicists, and engineers.
Interest in land crabs has burgeoned as biologists have increasingly focused on the evolution of terrestriality. Before the publication of this volume in 1988, there had been no single comprehensive source of information to serve biologists interested in the diverse aspects of terrestrial decapod crustacean. Biology of the Land Crabs was the first synthesis of recent and long-established findings on brachyuran and anomuran crustaceans that have evolved varying degrees of adaptation for life on land. Chapters by leading researchers take a coordinated evolutionary and comparative approach to systematics and evolution, ecology, behaviour, reproduction, growth and molting, ion and water balance, respiration and circulation, and energetics and locomotion. Each discusses how terrestrial species have become adapted from ancestral freshwater or marine forms. With its extensive bibliography and comprehensive index, including the natural history of nearly eighty species of brachyuran and anomuran crabs, Biology of the Land Crabs will continue to be an invaluable reference for researchers and advanced students.
Bionics evolved in the 1960s as a framework to pursue the development of artificial systems based on the study of biological systems. Numerous disciplines and technologies, including artificial intelligence and learningdevices, information processing, systems architecture and control, perception, sensory mechanisms, and bioenergetics, contributed to bionics research. This volume is based on a NATO Advanced Research Workshop within the Special Programme on Sensory Systems for Robotic Control, held in Il Ciocco, Italy, in June 1989. A consensus emerged at the workshop, and is reflected in the book, on the value of learning from nature in order to derive guidelines for the design of intelligent machines which operate in unstructured environments. The papers in the book are grouped into seven chapters: vision and dynamic systems, hands and tactile perception, locomotion, intelligent motor control, design technologies, interfacing robots to nervous systems, and robot societies and self-organization.
In the 40 years since the classic review of osmotic and ionic regulation written by Potts and Parry, there has been astonishing growth in scientific productivity, a marked shift in the direction and taxonomic distribution of research, and amazing changes in the technology of scientific research" It is indicative of the growth of the subject that as
This book is a collection of papers given by invited speakers at a Symposium on 'Feedback and Motor Control', held at the University of Glasgow from July 10th to 13th 1984, which was attended by over 200 scientists from 20 countries. The Symposium was the Fourth International Symposium organised by the Scottish Electrophysiological Society (SES), and on this occasion the SES joined forces with the Society for Experimental Biology (SEB), so that the Symposium was held dur ing the annual Summer Meeting of the SEB. A policy of the SES since its formation in 1970 has been to promote dialogue between scientists working on invertebrate and vertebrate nervous systems by hol
The present book is the product of conferences held in Bielefeld at the Center for interdisciplinary Sturlies (ZiF) in connection with a year-long ZiF Research Group with the theme "Prerational intelligence". The premise ex plored by the research group is that traditional notions of intelligent behav ior, which form the basis for much work in artificial intelligence and cog nitive science, presuppose many basic capabilities which are not trivial, as more recent work in robotics and neuroscience has shown, and that these capabilities may be best understood as ernerging from interaction and coop eration in systems of simple agents, elements that accept inputs from and act upon their surroundings. The main focus is on the way animals and artificial systems process in formation about their surroundings in order to move and act adaptively. The analysis of the collective properties of systems of interacting agents, how ever, is a problern that occurs repeatedly in many disciplines. Therefore, contributions from a wide variety of areas have been included in order to obtain a broad overview of phenomena that demoostrate complexity arising from simple interactions or can be described as adaptive behavior arising from the collective action of groups of agents. To this end we have invited contributions on topics ranging from the development of complex structures and functions in systems ranging from cellular automata, genetic codes, and neural connectivity to social behavior and evolution. Additional contribu tions discuss traditional concepts of intelligence and adaptive behavior. 1.
The focus of prerational intelligence is on the way animals and artificial systems utilize information about their surroundings in order to behave intelligently; the premise is that logic and symbolic reasoning are neither necessary nor, possibly, sufficient. Experts in the fields of biology, psychology, robotics, AI, mathematics, engineering, computer science, and philosophy review the evidence that intelligent behaviour can arise in systems of simple agents interacting according to simple rules; that self-organization and interaction with the environment are critical; and that quick approximations may replace logical analyses. It is argued that a better understanding of the intelligence inherent in procedure like those illustrated will eventually shed light on how rational intelligence is realised in humans. Readership: Scientifically literate general readers and scientists in all fields interested in understanding and duplicating biological intelligence.
The first chapter of this book traces the history of the development of walking machines from the original ideas of man-amplifiers and military rough-ground transport to today's diverse academic and industrial research and development projects. It concludes with a brief account of research on other unusual methods of locomotion. The heart of the book is the next three chapters on the theory and engineering of legged robots. Chapter 2 presents the basics of land loco motion, going on to consider the energetics of legged movement and the description and classification of gaits. Chapter 3, dealing with the mechanics of legged vehicles, goes into leg number and arrangement, and discusses mechanical design and actuation methods. Chapter 4 deals with analysis and control, describing the aims of control theory and the methods of modelling and control which have been used for both highly dynamic robots and multi-legged machines. Having dealt with the theory of control it is necessary to discuss the computing system on which control is to be implemented. This is done in Chapter 5, which covers architectures, sensing, algorithms and pro gramming languages. Chapter 6 brings together the threads of the theory and engineering discussed in earlier chapters and summarizes the current walking machine research projects. Finally, the applications, both actual and potential, of legged locomotion are described. Introduction Research into legged machines is expanding rapidly. There are several reasons why this is happening at this particular time.