Download Free Local Geometry Of The Fermi Surface Book in PDF and EPUB Free Download. You can read online Local Geometry Of The Fermi Surface and write the review.

A treatment of the Fermi-liquid theory of high-frequency phenomena in metals, in paricular the effects due to local features in the geometry of the Fermi surface. The text develops a consistent theory of several effects, such as cyclotron resonances in magnetic fields normal to the surface. Topics covered include: basic equations of the Fermi-liquid theory; cyclotron Doppler on waves; local anomalies in the Fermi surface; cyclotron resonancce in metals; magneto-acoustic oscillations and the local geometry of the Fermi surface.
First published in 1980, this is a Festschrift to honour Professor David Schoenberg, FRS, on the subject of electrons at the Fermi surface.
Modern Problems in Condensed Matter Sciences, Volume 27.2: Landau Level Spectroscopy focuses on the processes, reactions, methodologies, and approaches involved in condensed matter sciences, including magnetospectroscopy, resonances, electrodynamics, and magnetic fields. The selection first offers information on the magnetospectroscopy of confined semiconductor systems and the magnetophonon effect in two dimensions. Discussions focus on hot-electron magnetophonon resonance, normal resonances, free carrier states, confined impurities, and electron-phonon interaction. The text then takes a look at the energy spectrum and magnetooptics of band-inverting heterojunctions and the electrodynamics of two-dimensional electron systems in high magnetic fields. The publication examines Landau emission and the Shubnikov-de Haas (SdH) effect. Topics include smooth magnetoresistance and SdH effect, Landau level electronic lifetimes, experimental techniques, and Landau emission in III-IV semiconductors. The book then elaborates on a comprehensive review of the experimental aspects of the SdH effect; magnetoimpurity resonances in semiconductor transport; and magnetophonon resonance. The selection is a highly recommended reference for scientists and readers interested in the Landau level spectroscopy.
This thesis presents pioneering work in the relatively new field of focused ion beam (FIB) sculpting of single crystals to produce bespoke devices and enable the investigation of physics that cannot be studied in bulk samples. It begins with a comprehensive and didactic account of how to achieve this sculpting, revealing the ‘tricks of the trade’ of state-of-the-art FIB microstructuring. In subsequent chapters, the author presents ground-breaking results obtained from microstructures of the delafossite oxide metal PdCoO2 and the heavy fermion superconductor CeIrIn5. In these elegant, forefront experiments, a new form of directional ballistic transport in the ultra-pure delafossites is described and explained. Furthermore, a new way to spatially modulate superconductivity induced by strain is demonstrated with electrical transport measurements that agree well with predictions based on thermoelastic finite element simulations.
Progress in Low Temperature Physics
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.
The trend towards miniaturisation of microelectronic devices and the search for exotic new optoelectronic devices based on multilayers confer a crucial role on semiconductor interfaces. Great advances have recently been achieved in the elaboration of new thin film materials and in the characterization of their interfacial properties, down to the atomic scale, thanks to the development of sophisticated new techniques. This book is a collection of lectures that were given at the International Winter School on Semiconductor Interfaces: Formation and Properties held at the Centre de Physique des Rouches from 24 February to 6 March, 1987. The aim of this Winter School was to present a comprehensive review of this field, in particular of the materials and methods, and to formulate recom mendations for future research. The following topics are treated: (i) Interface formation. The key aspects of molecular beam epitaxy are emphasized, as well as the fabrication of artificially layered structures, strained layer superlattices and the tailoring of abrupt doping profiles. (ii) Fine characterization down to the atomic scale using recently devel oped, powerful techniques such as scanning tunneling microscopy, high reso lution transmission electron microscopy, glancing incidence x-ray diffraction, x-ray standing waves, surface extended x-ray absorption fine structure and surface extended energy-loss fine structure. (iii) Specific physical properties of the interfaces and their prospective applications in devices. We wish to thank warmly all the lecturers and participants, as well as the organizing committee, who made this Winter School a success.
This handbook delivers an up-to-date, comprehensive and authoritative coverage of the broad field of surface science, encompassing a range of important materials such metals, semiconductors, insulators, ultrathin films and supported nanoobjects. Over 100 experts from all branches of experiment and theory review in 39 chapters all major aspects of solid-state surfaces, from basic principles to applications, including the latest, ground-breaking research results. Beginning with the fundamental background of kinetics and thermodynamics at surfaces, the handbook leads the reader through the basics of crystallographic structures and electronic properties, to the advanced topics at the forefront of current research. These include but are not limited to novel applications in nanoelectronics, nanomechanical devices, plasmonics, carbon films, catalysis, and biology. The handbook is an ideal reference guide and instructional aid for a wide range of physicists, chemists, materials scientists and engineers active throughout academic and industrial research.