Download Free Live Load Distribution On Longitudinal Glued Laminated Timber Deck Bridges Book in PDF and EPUB Free Download. You can read online Live Load Distribution On Longitudinal Glued Laminated Timber Deck Bridges and write the review.

Over the past few years the United States Department of Agriculture (USDA), Forest Products Laboratory (FPL), and the Federal Highway Administration (FHWA) have supported several research programs. This paper is a result of a study sponsored by FPL, with the objective of determining how truckloads are distributed to the deck panels of a longitudinal glued-laminated timber deck bridge. Currently, the American Association of State Highway and Transportation Officials (AASHTO) LRFD (load and resistance factor design) Bridge Design Specification provides live load distribution provisions for longitudinal glued-laminated timber deck-panel bridges. The AASHTO LRFD live load distribution provisions for longitudinal glued-laminated timber deck bridges were based on the assumption that the bridge deck behaves as one slab and ignores the discontinuity of the bridge deck panels. This study investigated this assumption by using analytical models that validated field test data from several in-service bridges and data from a full-scale laboratory test bridge. The analytical models accounted for the effects of the interface between the deck panels as well as the effects of the transverse stiffener beams on the distribution of the live- load. The analytical live load distribution results above were compared with both the AASHTO LRFD and AASHTO Standard Specifications.
Increased use of timber bridges in the U.S. transportation system has required additional research to improve the current design methodology of these bridges. For this reason, the U.S. Forest Service, Forest Products Laboratory (FPL), and the Federal Highway Administration have supported several research programs to attain the objective listed above. This report is a result of a study sponsored by the FPL, with the objective of determining how highway truckloads are distributed to girders of a glued-laminated timber bridge. The American Association of State Highway and Transportation Official (AASHTO) load and resistance factor design (LRFD) Bridge Design Specification provides live-load distribution provisions for glued-laminated girder timber bridges that were used in previous AASHTO Specifications. The AASHTO live-load distribution provisions were reviewed in this report. Field-test results were used to review the current AASHTO LRFD glued-laminated timber girder bridge-design specifications and to validate analytical results obtained by finite-element analyses. With the validated analytical models, parametric studies were performed to determine the worst-case live-load distribution factors that can be used to calculate the design moment and shear for glued-laminated timber girders. Simplified live-load distribution equations that can be used to determine these distribution factors were developed and are provided in this report. These equations take into account how load is distributed to the bridge girders, considering the effects of span length, girder spacing, and clear width of the bridge.
Increased use of timber bridges in the U.S. transportation system has required additional research to improve the current design methodology of these bridges. For this reason, the U.S. Forest Service, Forest Products Laboratory (FPL), and the Federal Highway Administration have supported several research programs to attain the objective listed above. This report is a result of a study sponsored by the FPL, with the objective of determining how highway truckloads are distributed to girders of a glued-laminated timber bridge. The American Association of State Highway and Transportation Official (AASHTO) load and resistance factor design (LRFD) Bridge Design Specification provides live-load distribution provisions for glued-laminated girder timber bridges that were used in previous AASHTO Specifications. The AASHTO live-load distribution provisions were reviewed in this report. Field-test results were used to review the current AASHTO LRFD glued-laminated timber girder bridge-design specifications and to validate analytical results obtained by finite-element analyses. With the validated analytical models, parametric studies were performed to determine the worst-case live-load distribution factors that can be used to calculate the design moment and shear for glued-laminated timber girders. Simplified live-load distribution equations that can be used to determine these distribution factors were developed and are provided in this report. These equations take into account how load is distributed to the bridge girders, considering the effects of span length, girder spacing, and clear width of the bridge.