Download Free Lithium Niobate Crystals Book in PDF and EPUB Free Download. You can read online Lithium Niobate Crystals and write the review.

This book covers new research on LiNbO3 including current studies on intrinsic and extrinsic point defects and the contribution of intrinsic defects to photoinduced charge transport. Applications of this material are also discussed.
Lithium niobate crystals have a number of unique properties. Lithium niobate is at the same time a ferroelectric, piezoelectric, pyroelectric, and has high nonlinearly optical and electro-optical coefficients and photorefractive sensitivity. These properties enable these crystals to be used widely in optical and acoustic devices, and photorefractive sensitivity, enhanced by doping with transitional metals, offers new possibilities of using lithium niobate as a recording holographic medium. These properties are determined by the crystal structure of lithium niobate sensitive to physical and chemical effects. Special attention is given in the book to physico-chemical features of technology, disruption of stoichiometry in these crystals and detection of this disruption by physical methods. At the same time, the ideas and methods proposed in the book can be used in technology of other crystals.
The use of lithium niobate in signal filtering in TV sets and video cassette recorders is well established and it is finding increased application in optoelectronic modulation devices in DWDM (dense wavelength division multiplexing) fibre optic systems. This fully illustrated volume brings electronic engineers, materials scientists and physicists up to date by enlisting the expertise of active researchers and presenting their considered reviews.
With the use of ferroelectric materials in memory devices and the need for high-speed integrated optics devices, interest in ferroelectric thin films continues to grow. With their remarkable properties, such as energy nonvolatility, fast switching, radiative stability and unique optoacoustic and optoelectronic properties, Lithium Niobate-Based Heterostructures: Synthesis, properties and electron phenomena discusses why lithium niobate (LiNbO3) is one of the most promising of all ferroelectric materials. Based on years of study, this book presents the systematic characterization of substructure and electronic properties of a heterosystem formed in the deposition process of lithium niobate films onto the surface of silicon wafers.
This book is a collection of research papers that describe some of the latest research on lithium niobate, which is an important material with many technological applications. The papers fall into three sections, which respectively consider the relationship between photorefractive properties and the defect structure of lithium niobate, powder preparation using a wet chemistry method and high-energy ball-milling technique, and finally the investigation of the domain structures, stability and conduction, and applications in waveguide devices.
This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable crystals and other inorganic materials, as well as organic ferroelectrics (polymers, liquid crystals, and composites). Basic concepts, principles and methods for the physical property characteristics of ferroelectric materials are introduced in the first two chapters for those readers new to the subject of ferroelectricity. Not only professional researchers and engineers but also students and other readers who have limited physical knowledge and an interest in ferroelectrics, will welcome this book.
Recently, the rapid development of radiofrequency (RF)/microwave and photonic/optical waveguide technologies has had a significant impact on the current electronic industrial, medical and information and communication technology (ICT) fields. This book is a self-contained collection of valuable scholarly papers related to waveguide design, modeling, and applications. This book contains 20 chapters that cover three main subtopics of waveguide technologies, namely RF and microwave waveguide, photonic and optical waveguide and waveguide analytical solutions. Hence, this book is particularly useful to the academics, scientists, practicing researchers and postgraduate students whose work relates to the latest waveguide technologies.
This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in recent years by world renowned scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art. At the same time the book provides a view to future applications of those engineered materials in the field of photonics.
Nonlinear optical studies of periodic dielectric structures have blossomed in the past two decades. New fabrication techniques are producing fiber grating and multidimensional photonic crystals in materials where the refractive index can be varied by light pulses and beams. Gap solitons that can propagate at any velocity from zero to the speed of light and spatial solitons that prevent the diffractive spread of light in waveguide arrays are two examples of the new phenomena described in this book. Many new materials and structures are being developed that will impact new optical devices with applications in optical communications and optical data processing. All the above topics are addressed in detail in this book.
Applications of optical switching in network elements and communication networks are discussed in considerable depth. Optical circuits, packet, and burst switching are all included. Composed of distinct self-contained chapters with minimum overlaps and independent references. Provides up-to-date comprehensive coverage of optical switching, technologies, devices, systems and networks. Discusses applications of optical switching in network elements and communications networks.