Download Free Liquid Sloshing In Containers With Flexibility Book in PDF and EPUB Free Download. You can read online Liquid Sloshing In Containers With Flexibility and write the review.

This book described vibration reduction for flexible structures by the command smoothing techniques. The Command smoothing technique is a kind of open-loop controller. The operator's commands filter through a piecewise continuous function, called smoother, to produce smoothed commands. Smoothed commands move flexible dynamic systems toward desired positions with minimal oscillations. Five types of command smoother were reported including one-piece, two-pieces, three-pieces, and four-pieces smoothers, and the smoother for multi-mode Duffing oscillators. All smoothers are robust to changes in the system parameters and working conditions. The command smoothing technique has been successfully applied to industrial cranes, sloshing suppression, flexible manipulators, high-speed cam and follower systems, and helicopter slung loads.
This book is an essential guide to nonlinear dynamics and vibration control, detailing both the theory and the practical industrial applications within all aspects of engineering. Demonstrating how to improve efficiency through reducing unwanted vibration, it will aid both students and engineers in practically and safely improving flexible structures through control methods. Increasing demand for light-weight robotic systems and space applications has actuated the design and construction of more flexible structures. These flexible structures, involving numerous dynamic systems, experience unwanted vibrations, impacting accuracy, operating speed, safety and, importantly, efficiency. This book aids engineers in assuaging this issue through vibration control methods, including nonlinear dynamics. It covers topics such as dynamic modeling of nonlinear system, nonlinear oscillators, and modal analyses of multiple-mode system. It also looks at vibration control methods including linear control, nonlinear control, intelligent control, and command smoothers. These control methods are effective and reliable methods to counteract unwanted vibrations. The book is practically minded, using industrial applications throughout, such as bridge cranes, tower cranes, aerial cranes and liquid sloshing. It also discusses cable-suspension structures, light-weight links, and fluid motions which exhibit flexible-structure dynamics. The book will be of interest to students and engineers alike, in the field of mechatronics, mechanical systems and signal processing, nonlinear dynamics, vibration, and control engineering.
This the fifth volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010,, brings together 146 chapters on Structural Dynamics. It presents early findings from experimental and computational investigations of on a wide range of area within Structural Dynamics, including studies such as Simulation and Validation of ODS Measurements made Using a Continuous SLDV Method on a Beam Excited by a Pseudo Random Signal, Comparison of Image Based, Laser, and Accelerometer Measurements, Modal Parameter Estimation Using Acoustic Modal Analysis, Mitigation of Vortex-induced Vibrations in Long-span Bridges, and Vibration and Acoustic Analysis of Brake Pads for Quality Control.
The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.
Selected, peer reviewed papers from the 2013 2nd International Conference on Machine Design and Manufacturing Engineering (ICMDME 2013), May 1-2, 2013, Jeju Island, South Korea
Modelling large-scale wave fields and their interaction with coastal and offshore structures has become much more feasible over the last two decades with increases in computer speeds. Wave modelling can be viewed as an extension of wave theory, a mature and widely published field, applied to practical engineering through the use of computer tools.