Download Free Liquid Phase Oxidation Of Hydrocarbons Book in PDF and EPUB Free Download. You can read online Liquid Phase Oxidation Of Hydrocarbons and write the review.

Approx.424 pages
Oxidation of Organic Compounds: Medium Effects in Radical Reactions explores the role of solvents and of the composition of phase states in radical-chain processes involved in the oxidation of organic compounds. Organized into 10 chapters, this book begins with a discussion of the basic concepts relating to the mechanism involved in the oxidation of hydrocarbons and other organic compounds in liquid-phase reactions. Subsequent chapters detail some methods for studying the mechanism of oxidation reactions; role of solvation in chemical reaction kinetics; role of the medium in chain-initiation reactions; role of non-specific and specific solvation in chain-propagation and chain-termination reactions; and the role of solvation in chain-termination reactions in inhibitors. The influence of the solvent and the phase state of substances undergoing oxidation on the rates and mechanisms of individual elementary processes are also addressed. The last chapter examines the problem of the influence of the solid state of the polymer on the reactivity of radicals. This monograph will be valuable to scientific research workers, engineers, and engineering technologists specializing in the field of radical reactions and in particular in the oxidation of organic compounds.
Liquid Phase Oxidation
This first book to focus on catalytic processes from the viewpoint of green chemistry presents every important aspect: · Numerous catalytic reductions and oxidations methods · Solid-acid and solid-base catalysis · C-C bond formation reactions · Biocatalysis · Asymmetric catalysis · Novel reaction media like e.g. ionic liquids, supercritical CO2 · Renewable raw materials Written by Roger A. Sheldon -- without doubt one of the leaders in the field with much experience in academia and industry -- and his co-workers, the result is a unified whole, an indispensable source for every scientist looking to improve catalytic reactions, whether in the college or company lab.
The Oxidation of Cyclohexane focuses on the processes, methodologies, reactions, and approaches involved in the oxidation of cyclohexane. The publication first offers information on the theory of slow chain oxidations and the products of liquid-phase cyclohexane oxidation. Discussions focus on the applicability of the stationary state method to liquid-phase oxidation reactions; mechanism of liquid hydrocarbon chain oxidation; kinetic equations for product accumulation in degenerate branching chain reactions; and changes of the volume of the liquid phase due to oxidation product formation. The text then ponders on experimental apparatus for the study of the liquid-phase oxidation of cyclohexane, including prevention of cyclohexane losses in the waste gases, explosion danger and problems of safety, and characteristics of gas sampling in cyclohexane oxidation apparatus. The manuscript takes a look at the kinetics of uncatalyzed cyclohexane oxidation and kinetics of cyclohexane oxidation in continuous flow systems. Topics include effect of temperature on the relative yield of cyclohexane oxidation products; kinetics of cyclohexane oxidation in a glass reactor; rate of oxygen absorption and accumulation of reaction products; ideal displacement reactor; and determination of diffusion factor. The publication is a dependable reference for readers interested in the oxidation of cyclohexane.
Providing a comprehensive review of reactions of oxidation for different classes of organic compounds and polymers, and biological processes mediated by free radicals, Oxidation and Antioxidants in Organic Chemistry and Biology puts the data and bibliographical information you need into one easy-to-use resource. You will find up-to-date information
Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an international team of leading chemists representing both industry and academia. The book begins with a chapter on environmentally benign oxidants and then covers: Selective oxidations catalyzed by TS-1 and other metal-substituted zeolites Selective catalytic oxidation over ordered nanoporous metallo-aluminophosphates Selective oxidations catalyzed by mesoporous metal-silicates Liquid phase oxidation of organic compounds by supported metal-based catalysts Selective liquid phase oxidations in the presence of supported polyoxometalates Selective oxidations catalyzed by supported metal complexes Liquid phase oxidation of organic compounds by metal-organic frameworks Heterogeneous photocatalysis for selective oxidations with molecular oxygen All the chapters dedicated to specific types of catalysts follow a similar organization and structure, making it easy to compare the advantages and disadvantages of different catalysts. The final chapter examines the latest industrial applications, such as the production of catechol and hydroquinone, cyclohexanone oxime, and propylene oxide. With its unique focus on liquid phase heterogeneous oxidation catalysis, this book enables researchers in organic synthesis and oxidation catalysis to explore and develop promising new catalytic materials and synthetic routes for a broad range of industrial applications.
The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
Volume 1 covers the most important technological aspects of the use of molecular oxygen for catalytic oxidation reactions.Volume 2 addresses the safety issues associated with the use of oxygen in catalytic oxidation reactions.Contents Vol. 1: 1. Introduction. 2. Chemical-physical properties of molecular oxygen. 3. Oxygen production technologies. 4. Chemical fundamentals of oxidation reactions. 5. Reactor technologies for multiphase systems. 6. Liquid phase oxidations. 7. Gas phase selective oxidations. 8. Selective oxidation of paraffins. References. Index. Vol. 2: 9. Introduction to safety problems in the chemical industry. 10. Chemical aspects of combustion in the gaseous phase. 11. Homogeneous chemical explosions: autoignition or spontaneous ignition. 12. Deflagration or propagation of flame. 13. Conditions governing flame propagation capability. 14. Detonation in the gaseous phase. 15. Prevention of and protection against explosions. References. Index.
This book offers a comprehensive overview of the most recent developments in both total oxidation and combustion and also in selective oxidation. For each topic, fundamental aspects are paralleled with industrial applications. The book covers oxidation catalysis, one of the major areas of industrial chemistry, outlining recent achievements, current challenges and future opportunities. One distinguishing feature of the book is the selection of arguments which are emblematic of current trends in the chemical industry, such as miniaturization, use of alternative, greener oxidants, and innovative systems for pollutant abatement. Topics outlined are described in terms of both catalyst and reaction chemistry, and also reactor and process technology.