Download Free Liquid Crystal Colloids Book in PDF and EPUB Free Download. You can read online Liquid Crystal Colloids and write the review.

This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.
This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.
This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.
'The overall book content is excellently coordinated to form a synchronised story, interesting to a broad scientific audience … The book summarises the present knowledge in the field, introduces fundamental concepts to the beginners, describes key measuring methods and presents several different typical demonstrative systems, some of them exhibiting an extraordinary rich spectrum of structures and superstructures. I am sure that with time the book will become an attractor to a broad audience (physicists, chemists, material scientists, engineers, etc.), ranging from students, beginners in the field to experienced researchers. To summarise, this is the book that I have been missing on my bookshelf.'Liquid Crystals TodayWhile liquid crystals are today widely known for their successful application in flat panel displays (LCDs), academic liquid crystal research is more and more targeting situations where these anisotropic fluids are put to completely different use, in varying contexts. A particularly strong focus is on colloidal liquid crystals, where particles, bubbles or drops are dispersed in a liquid crystal phase. The liquid crystal can act as a host phase, with the inclusions constituting foreign guests that disturb the local order in interesting ways, often resulting in large-scale positional arrangement and/or uniform alignment of the guests. But it may also be formed by solid particles themselves, if these are of nanoscale dimensions and of disc- or rod-shape, and if they are suspended in an isotropic liquid host at sufficient concentration.This book aims to cover both the modern research tracks, gathering pioneering researchers of the different subfields to give a concise overview of the basis as well as the prospects of their respective specialties. The scope spans from curiosity-driven fundamental scientific research to applied sciences. Over the course of the next decade, the former is likely to generate new tracks of the latter type, considering the exploratory and productive phase of this young research field.
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
This book provides an introduction to this exciting and relativelynew subject with chapters covering natural and synthetic polymers,colloids, surfactants and liquid crystals highlighting the many andvaried applications of these materials. Written by an expert in thefield, this book will be an essential reference for people workingin both industry and academia and will aid in understanding of thisincreasingly popular topic. Contains a new chapter on biological soft matter Newly edited and updated chapters including updated coverageof recent aspects of polymer science. Contain problems at the end of each chapter to facilitateunderstanding
This book on liquid crystals reports on the new perspectives that have been brought about by the recent expansion of frontiers and overhaul of common beliefs. First, it explores the interaction of light with mesophases, when the light or matter is endowed with topological defects. It goes on to show how electrophoresis, electro-osmosis and the swimming of flagellated bacteria are affected by the anisotropic properties of liquid crystals. It also reports on the recent progress in the understanding of thermomechanical and thermohydrodynamical effects in cholesterics and deformed nematics and refutes the common belief that these effects could explain Lehmann’s observations of the rotation of cholesteric droplets subjected to a temperature gradient. It then studies the physics of the dowser texture, which has remarkable properties. This is of particular interest in regards to nematic monopoles, which can easily be generated, set into motion and collided within it. Finally, this book deals with the spontaneous emergence of chirality in nematics made of achiral molecules, and provides a brief historical context of chirality
This handbook will provide the reader with a profound introduction to the key subjects comprising the relatively new topic of Soft Condensed Matter. It will provide students and researchers with an authoritative overview of the field, identify key principles at play, and the most prominent ways of further development.
This book addresses new challenges in soft matter and colloids. It presents timely reports on colloidal self-assembly, soft matters from liquid crystals, nanoparticles in liquid crystals, hydrocolloids, hybrid nanosystems, nanosuspensions, and dispersion of nanoparticles in different media, soft matter processing and modern experiments related with soft matters.
This book is a printed edition of the Special Issue "Nanomaterials in Liquid Crystals" that was published in Nanomaterials