Download Free Liquefaction Around Marine Structures With Cd Rom Book in PDF and EPUB Free Download. You can read online Liquefaction Around Marine Structures With Cd Rom and write the review.

This book, whose primary aim is to describe liquefaction processes and their implications for marine structures such as pipelines, sea outfalls, quay walls and caisson breakwaters, discusses the subject of soil liqeufaction in the marine environment.In addition, the physics of liquefaction (including examples illustrating the catastrophic consequences of soil liquefaction with regard to marine structures) are described, and the mathematical modelling of liqeufaction is treated in detail. Also, carefully selected numerical examples support the discussion of assessing liquefaction potential, and benchmark cases such as buried gas pipelines and their floatation, caisson breakwaters, cover stones and their interaction with liquefied soil along with counter measures are investigated.
With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering.
Modern design of berm breakwaters began about thirty years ago. However, to date, there has been a lack of a well-established, formal design methodology on berm breakwaters. The authors Dr Jentsje van der Meer and Sigurdur Sigurdarson combine over 40 years of collective experience working with breakwaters to put forward a design framework in Design and Construction of Berm Breakwaters; covering the science and design practices of berm breakwater structures. The original design consisted of mass armoured berms that reshaped into statically stable S-shaped slopes. The design was adopted in Iceland and eventually led to a development with more stable structures by using available rock sizes, large rock, and more rock gradings than just 'small rock (core)' and 'large rock (berm)'. This more stable and only partly reshaping structure is called the Icelandic-type berm breakwater.Written for researchers and practitioners, the volume consists of chapters on geometrical designs of the berm breakwater cross-section, including berm reshaping and wave overtopping, quarry and project management, as well as blasting and sorting techniques, designs for various wave conditions and available rock classes, and case studies of already constructed berm breakwaters.
This book is an extended and substantially updated edition of the previous book editions published in 1996 and 2013 under the same title. The 3rd edition is a one-volume, modern and comprehensive overview of the current knowledge of regular and random ocean surface waves in deep waters and in coastal zones.Since the previous editions many new theoretical advances have been made in the physical understanding and analytical and numerical treatment of various ocean wave problems. The revisions and supplements demanded by these advances have been substantial, therefore the scope of the book has been extended by adding a new chapter and substantially supplementing others.All chapters of the book have been rewritten to include and describe in detail many new discoveries made since the completion of the previous editions. In this 3rd edition a comprehensive and updated overview of the fundamentals of the regular wave mechanics, as well as the spectral and statistical properties of random waves are given. Except for the updated chapters dedicated to tsunami and extreme waves, a new chapter dealing with other types of impulsive waves starting from rest, are also included.The air-sea interaction processes as well as the last improvements in ocean wave modelling and presently available wave prediction models (WAM, WAVEWATCH III, UMWM, NEMO) are thoroughly discussed and their applications are demonstrated. The review of the present ocean observation methods encompasses the modern sea-truthing, as well as applications of data from presently operating marine satellites.In this revised edition, chapters on the behavior of surface waves in the vegetated environments such as coral reef, mangrove forest, seaweed and seagrass areas are substantially extended and updated to include the last discoveries.The explanations in the book are self-contained and detailed enough to capture the interest of the potential readers and to prompt them to explore the research literature. The list of rapidly growing number of the recent papers on the ocean waves has been extended substantially, up to about 900 titles.
This book set is a revised version of the 2005 edition of Theory and Applications of Ocean Surface Waves. It presents theoretical topics on ocean wave dynamics, including basic principles and applications in coastal and offshore engineering as well as coastal oceanography. Advanced analytical and numerical techniques are demonstrated. In this revised version, five chapters on recent developments in linear and nonlinear aspects have been added. The first is on detailed analyses in Wave/Structure Interactions. The second is a new section on Waves through a Marine Forest, a topic motivated by its possible relevance to tsunami reduction. The third is on Long Waves in Shallow Water and the fourth is an update on Broad-Banded Nonlinear Surface Waves in the Open Sea to include new findings in this topic. The fifth is an expanded chapter on Numerical Simulation of Nonlinear Wave Dynamics to include predictions of nonlinear spectral evolution and rogue wave occurrence and dynamics using large-scale phase-resolved simulations. This revised version also includes recent developments in precorrected-FFT accelerated O(N log N) low- and high-order boundary element methods for the computation of fully nonlinear wave-wave and wave-body interactions.Theory and Applications of Ocean Surface Waves (2016) will be invaluable for graduate students and researchers in coastal and ocean engineering, geophysical fluid dynamicists interested in water waves, and theoretical scientists and applied mathematicians wishing to develop new techniques for challenging problems or to apply techniques existing elsewhere.
Synthetic-aperture radar (SAR) as a form of radar to create images of objects, uses the motion of the radar antenna over a targeted region to provide finer spatial resolution than is possible with conventional beam-scanning radars by mounting the antenna on a moving platform such as an aircraft or spacecraft. As antenna aperture (the 'size' of the antenna) is defined by the distance the SAR device travels over a target in the time taken for the radar pulses to return to the antenna, the larger the aperture is, the higher the image resolution, therefore, this enables SAR to create high resolution images with comparatively small physical antennas.This special book aims to provide the updated theories and methods for the use of synthetic aperture radar (SAR) onboard satellites to detect ocean processes, i.e., SAR ocean remote sensing. It is a hi-tech application field having been developed since late 1970s and become a powerful tool for obtaining dynamic signatures from the remote and broad ocean.
This book focuses on the phenomenon of sediment erosion and resuspension in the Yellow River delta, China, which is a vital issue involved in understanding the sediment transport processes in estuarine and coastal environments, and how these contribute to the nature and distribution of geohazards in the subaqueous Yellow River delta and Bohai Sea. The most important sections of this book will be the detailed physical mechanisms and theoretical models of sediment erosion and resuspension problem fully considering the wave-induced seabed dynamic response to waves, which are particularly useful for postgraduate students and junior researchers entering the discipline of estuary and coastal sedimentation, marine geotechnical engineering, estuary and coastal engineering, harbor and waterway engineering and coastal environmental protection. This book can also serve as a textbook for advanced graduate students of Marine Engineering Geology and Estuarine Sediment Dynamics.
Beaches in Japan have been eroding since the 1970s because of artificial land alterations and unsustainable coastal development. Almost all causes of the beach erosion in Japan are due to anthropogenic factors — as a result of human activity. This book presents the state of the beaches throughout Japan, looking at the current reality and the classification of causes of beach erosion using real-life, illustrated examples. It then goes on to look at practical models which can be used to predict changes to different types of beaches, and concludes with investigation of beach erosion as a wider structural problem. Lessons learnt show the manner in which excessive coastal development without clearly identified measures for beach protection can have widespread global ramifications.This second edition presents new findings from field studies carried out on Japanese beaches, along with the development and improvement of the numerical model presented previously. In addition to the first edition, six new examples of the beach erosion in Japan are included, as is new analysis of the BG model (a model for predicting based on Bagnold's concept), which can be applicable to various field problems.Originally published in Japanese (2004), this updated version gives clear practical guidance to coastal engineers working to prevent irreversible beach erosion and sustainable coastal development policy.
The book provides a comprehensive and up-to-date overview of the physical processes which, according to the present state of knowledge, determine the evolution of coastal systems and their response to human interventions. This response depends to a large degree on the self-organising properties of coastal dynamics, which form a leading theme throughout the book. The basic theoretical ideas are explained in text and figures and also in formulas for the more mathematically inclined reader. Theories are illustrated with examples from estuaries, coastal lagoons, beaches and tidal flat systems from all over the world. The rules and simple models can be used directly without relying on complex computations; much attention is given to the strengths and weaknesses of the underlying theories and their limits of applicability. The book is fully self-contained; some knowledge of basic physics and mathematics is recommended. The book is an upgrade of the first edition. Most parts are rewritten and chapters are added to incorporate research results, new insight and experience of the past ten years. This book is intended for everyone interested in coastal systems for professional or educational reasons.
The book is organized into two parts: the first part covers (i) the precious lessons obtained from recent actual tsunami disasters including the 2004 Indian Ocean Tsunami and 2011 Great East Japan Earthquake Disaster, (ii) fundamental knowledge of tsunami for our survival, and (iii) concludes the lessons learnt and listing measures for tsunami disaster mitigation for saving human lives. The second part presents tsunami from academic perspective in two chapters: one describes tsunami occurrence mechanism and near-shore behavior; the other mentions numerical simulation and forecasting of tsunami.