Download Free Lipid Signaling And Metabolism Book in PDF and EPUB Free Download. You can read online Lipid Signaling And Metabolism and write the review.

Lipid Signaling and Metabolism provides foundational knowledge and methods to examine lipid metabolism and bioactive lipid signaling mediators that regulate a broad spectrum of biological processes and disease states. Here, world-renowned investigators offer a basic examination of general lipid, metabolism, intracellular lipid storage and utilization that is followed by an in-depth discussion of lipid signaling and metabolism across disease areas, including obesity, diabetes, fatty liver disease, inflammation, cancer, cardiovascular disease and mood-related disorders. Throughout, authors demonstrate how expanding our understanding of lipid mediators in metabolism and signaling enables opportunities for novel therapeutics. Emphasis is placed on bioactive lipid metabolism and research that has been impacted by new technologies and their new potential to transform precision medicine. - Provides a clear, up-to-date understanding of lipid signaling and metabolism and the impact of recent technologies critical to advancing new studies - Empowers researchers to examine bioactive lipid signaling and metabolism, supporting translation to clinical care and precision medicine - Discusses the role of lipid signaling and metabolism in obesity, diabetes, fatty liver disease, inflammation, cancer, cardiovascular disease and mood-related disorders, among others
Lipid Signaling and Metabolism provides foundational knowledge and methods to examine lipid metabolism and bioactive lipid signaling mediators that regulate a broad spectrum of biological processes and disease states. Here, world-renowned investigators offer a basic examination of general lipid, metabolism, intracellular lipid storage and utilization that is followed by an in-depth discussion of lipid signaling and metabolism across disease areas, including obesity, diabetes, fatty liver disease, inflammation, cancer, cardiovascular disease and mood-related disorders. Throughout, authors demonstrate how expanding our understanding of lipid mediators in metabolism and signaling enables opportunities for novel therapeutics. Emphasis is placed on bioactive lipid metabolism and research that has been impacted by new technologies and their new potential to transform precision medicine.
Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.
The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.
Phospholipids are no longer considered exclusively as the building blocks of biomembranes, but are now regarded to be exceptionally important to cellular signalling.Another conclusion resulting from studies over the past several years is that no single general scheme for the role of phospholipids during cell activation can be drawn as representative of all cells. This book presents a comprehensive view of the recent advances made in certain major research areas within the field of phospholipid metabolism in cellular signalling. Topics discussed within this volume include lipid composition of cellular membranes and their organization in biological systems, the dynamic aspects of phospholipid metabolism and its regulation by extracellular stimuli, and the role of newly discovered glycosyl-phosphatidylinositols in insulin action . The book also discusses two biologically active phospholipids: the sphingolipids, and ether-linked glycerophospholipids (the platelet activating factor). Phospholipid Metabolism in Cellular Signaling is an important research reference that should be considered required reading by all scientists and graduate students working on cell activation (e.g., growth factors, hormones, and oncogenes).
Lipids are functionally versatile molecules. They have evolved from relatively simple hydrocarbons that serve as depot storages of metabolites and barriers to the permeation of solutes into complex compounds that perform a variety of signalling functions in higher organisms. This volume is devoted to the polar lipids and their constituents. We have omitted the neutral lipids like fats and oils because their function is generally to act as deposits of metabolizable substrates. The sterols are also outside the scope of the present volume and the reader is referred to volume 28 of this series which is the subject of cholesterol. The polar lipids are comprised of fatty acids attached to either glycerol or sphingosine. The fatty acids themselves constitute an important reservoir of substrates for conversion into families of signalling and modulating molecules including the eicosanoids amongst which are the prostaglandins, thromboxanes and leucotrienes. The way fatty acid metabolism is regulated in the liver and how fatty acids are desaturated are subjects considered in the first part of this volume. This section also deals with the modulation of protein function and inflammation by unsaturated fatty acids and their derivatives. New insights into the role of fatty acid synthesis and eicosenoid function in tumour progression and metastasis are presented.
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
This book discusses the chemistry of food proteins and peptides and their relationship with nutritional, functional, and health applications. Bringing together authorities in the field, it provides a comprehensive discussion focused on fundamental chemistries and mechanisms underpinning the structure-function relationships of food proteins and peptides. The functional and bioactive properties hinge on their structural features such as amino acid sequence, molecular size, hydrophobicity, hydrophilicity, and net charges. The book includes coverage of advances in the nutritional and health applications of protein and peptide modifications; novel applications of food proteins and peptides in the development of edible functional biomaterials; advances in the use of proteomics and peptidomics for food proteins and peptide analysis (foodomics); and the relevance of food protein and peptide chemistries in policy and regulation. Research into the fundamental chemistries behind the functional, health and nutritional benefits is burgeoning and has gained the interest of scientists, the industry, regulatory agencies, and consumers. This book fills the knowledge gap providing an excellent source of information for researchers, instructors, students, food and nutrition industry, and policy makers.