Download Free Linking Government Data Book in PDF and EPUB Free Download. You can read online Linking Government Data and write the review.

Federal government statistics provide critical information to the country and serve a key role in a democracy. For decades, sample surveys with instruments carefully designed for particular data needs have been one of the primary methods for collecting data for federal statistics. However, the costs of conducting such surveys have been increasing while response rates have been declining, and many surveys are not able to fulfill growing demands for more timely information and for more detailed information at state and local levels. Innovations in Federal Statistics examines the opportunities and risks of using government administrative and private sector data sources to foster a paradigm shift in federal statistical programs that would combine diverse data sources in a secure manner to enhance federal statistics. This first publication of a two-part series discusses the challenges faced by the federal statistical system and the foundational elements needed for a new paradigm.
Linking Government Data provides a practical approach to addressing common information management issues. The approaches taken are based on international standards of the World Wide Web Consortium. Linking Government Data gives both the costs and benefits of using linked data techniques with government data; describes how agencies can fulfill their missions with less cost; and recommends how intra-agency culture must change to allow public presentation of linked data. Case studies from early adopters of linked data approaches in international governments are presented in the last section of the book. Linking Government Data is designed as a professional book for those working in Semantic Web research and standards development, and for early adopters of Semantic Web standards and techniques. Enterprise architects, project managers and application developers in commercial, not-for-profit and government organizations concerned with scalability, flexibility and robustness of information management systems will also find this book valuable. Students focused on computer science and business management will also find value in this book.
Annotation. This book constitutes the refereed proceedings of the 9th International Conference, EGOV 2010, held in Lausanne, Switzerland, in August/September 2010. The 36 revised full papers presented were carefully reviewed and selected from 111 submissions. The papers are organized in topical sections on foundations, transformation, evaluation, adoption and diffusion, citizen perspectives and social inclusion, infrastructure, and business process modell.
Public Policy Analytics: Code & Context for Data Science in Government teaches readers how to address complex public policy problems with data and analytics using reproducible methods in R. Each of the eight chapters provides a detailed case study, showing readers: how to develop exploratory indicators; understand ‘spatial process’ and develop spatial analytics; how to develop ‘useful’ predictive analytics; how to convey these outputs to non-technical decision-makers through the medium of data visualization; and why, ultimately, data science and ‘Planning’ are one and the same. A graduate-level introduction to data science, this book will appeal to researchers and data scientists at the intersection of data analytics and public policy, as well as readers who wish to understand how algorithms will affect the future of government.
The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study. Table of Contents: List of Figures / Introduction / Principles of Linked Data / The Web of Data / Linked Data Design Considerations / Recipes for Publishing Linked Data / Consuming Linked Data / Summary and Outlook
In the light of better and more detailed administrative databases, this open access book provides statistical tools for evaluating the effects of public policies advocated by governments and public institutions. Experts from academia, national statistics offices and various research centers present modern econometric methods for an efficient data-driven policy evaluation and monitoring, assess the causal effects of policy measures and report on best practices of successful data management and usage. Topics include data confidentiality, data linkage, and national practices in policy areas such as public health, education and employment. It offers scholars as well as practitioners from public administrations, consultancy firms and nongovernmental organizations insights into counterfactual impact evaluation methods and the potential of data-based policy and program evaluation.
By intelligence officials for intelligent people
This book provides modern technical answers to the legal requirements of pseudonymisation as recommended by privacy legislation. It covers topics such as modern regulatory frameworks for sharing and linking sensitive information, concepts and algorithms for privacy-preserving record linkage and their computational aspects, practical considerations such as dealing with dirty and missing data, as well as privacy, risk, and performance assessment measures. Existing techniques for privacy-preserving record linkage are evaluated empirically and real-world application examples that scale to population sizes are described. The book also includes pointers to freely available software tools, benchmark data sets, and tools to generate synthetic data that can be used to test and evaluate linkage techniques. This book consists of fourteen chapters grouped into four parts, and two appendices. The first part introduces the reader to the topic of linking sensitive data, the second part covers methods and techniques to link such data, the third part discusses aspects of practical importance, and the fourth part provides an outlook of future challenges and open research problems relevant to linking sensitive databases. The appendices provide pointers and describe freely available, open-source software systems that allow the linkage of sensitive data, and provide further details about the evaluations presented. A companion Web site at https://dmm.anu.edu.au/lsdbook2020 provides additional material and Python programs used in the book. This book is mainly written for applied scientists, researchers, and advanced practitioners in governments, industry, and universities who are concerned with developing, implementing, and deploying systems and tools to share sensitive information in administrative, commercial, or medical databases. The Book describes how linkage methods work and how to evaluate their performance. It covers all the major concepts and methods and also discusses practical matters such as computational efficiency, which are critical if the methods are to be used in practice - and it does all this in a highly accessible way!David J. Hand, Imperial College, London
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
In 2011 the World Bank—with funding from the Bill and Melinda Gates Foundation—launched the Global Findex database, the world's most comprehensive data set on how adults save, borrow, make payments, and manage risk. Drawing on survey data collected in collaboration with Gallup, Inc., the Global Findex database covers more than 140 economies around the world. The initial survey round was followed by a second one in 2014 and by a third in 2017. Compiled using nationally representative surveys of more than 150,000 adults age 15 and above in over 140 economies, The Global Findex Database 2017: Measuring Financial Inclusion and the Fintech Revolution includes updated indicators on access to and use of formal and informal financial services. It has additional data on the use of financial technology (or fintech), including the use of mobile phones and the Internet to conduct financial transactions. The data reveal opportunities to expand access to financial services among people who do not have an account—the unbanked—as well as to promote greater use of digital financial services among those who do have an account. The Global Findex database has become a mainstay of global efforts to promote financial inclusion. In addition to being widely cited by scholars and development practitioners, Global Findex data are used to track progress toward the World Bank goal of Universal Financial Access by 2020 and the United Nations Sustainable Development Goals. The database, the full text of the report, and the underlying country-level data for all figures—along with the questionnaire, the survey methodology, and other relevant materials—are available at www.worldbank.org/globalfindex.