Download Free Linguistic Single Valued Neutrosophic Power Aggregation Operators And Their Applications To Group Decision Making Problems Book in PDF and EPUB Free Download. You can read online Linguistic Single Valued Neutrosophic Power Aggregation Operators And Their Applications To Group Decision Making Problems and write the review.

Linguistic single-valued neutrosophic set (LSVNS) is a more reliable tool, which is designed to handle the uncertainties of the situations involving the qualitative data. In the present manuscript, we introduce some power aggregation operators (AOs) for the LSVNSs, whose purpose is to diminish the influence of inevitable arguments about the decision-making process.
Single-valued neutrosophic sets (SVNSs), which involve in truth-membership, indeterminacy-membership and falsity-membership, play a significant role in describing the decision-makers’ preference information. In this study, a single-valued neutrosophic multi-criteria decision-making (MCDM) approach is developed based on Shapley fuzzy measures and power aggregation operator that takes a correlative relationship among criteria into account and also simultaneously reduces the effects of abnormal preference information.
Single-valued neutrosophic set (SVN) can valid depict the incompleteness, nondeterminacy and inconsistency of evaluation opinion, and the Power average (PA) operator can take into account the correlation of multiple discussed data. Meanwhile, Archimedean copula and co-copula (ACC) can signicant generate operational laws based upon diverse copulas.
Single-valued neutrosophic set (SVNS) is an important contrivance for directing the decision-making queries with unknown and indeterminant data by employing a degree of “acceptance”, “indeterminacy”, and “non-acceptance” in quantitative terms. Under this set, the objective of this paper is to propose some new distance measures to find discrimination between the SVNSs. The basic axioms of the measures have been highlighted and examined their properties. Furthermore, to examine the relevance of proposed measures, an extended TOPSIS (“technique for order preference by similarity to ideal solution”) method is introduced to solve the group decision-making problems. Additionally, a new clustering technique is proposed based on the stated measures to classify the objects. The advantages, comparative analysis as well as superiority analysis is given to shows its influence over existing approaches.
The power Heronian aggregation (PHA) operator can use the advantages of power average and the Heronian mean operator, which together could take into account the interrelationship of the aggregated arguments, and therefore alleviate the e ects caused by unreasonable data through considering the support degree between input arguments. However, PHA operators cannot be used to process single-valued neutrosophic numbers (SVNNs), which is significant for extending it to SVNNs.
A single-valued neutrosophic linguistic set (SVNLS) is a popular fuzzy tool for describing deviation information in uncertain complex situations. The aim of this paper is to study some logarithmic distance measures and study their usefulness in multiple attribute group decision making (MAGDM) problems within single-valued neutrosophic linguistic (SVNL) environments.
In present study, a new aggregation operators of single-valued neutrosophic soft numbers have so far not yet been applied for ranking of the alternatives in decision-making problems.
In recent years, hesitant fuzzy sets (HFSs) and neutrosophic sets (NSs) have become a subject of great interest for researchers and have been widely applied to multi-criteria group decision-making (MCGDM) problems.
In order to take into account quantitative and qualitative information in real complex decision making issue, a multiple-valued neutrosophic uncertain linguistic set (MVNULS) is initially proposed, which includes the uncertain linguistic part and the multiple-valued neutrosophic set (MVNS). Consequently, it has the advantages of them in expressing evaluation information.
In this article, we expand the Muirhead mean (MM) operator and dual Muirhead mean (DMM) operator with single-valued neutrosophic 2-tuple linguistic numbers (SVN2TLNs) to propose the single-valued neutrosophic 2-tuple linguistic Muirhead mean (SVN2TLMM) operator, the single-valued neutrosophic 2-tuple linguistic weighted Muirhead mean (SVN2TLWMM) operator, the single-valued neutrosophic 2-tuple linguistic dual Muirhead mean (SVN2TLDMM) operator, and the single-valued neutrosophic 2-tuple linguistic weighted dual Muirhead mean (SVN2TLWDMM) operator. Multiple attribute decision making (MADM) methods are then proposed using these operators. Finally, we utilize an applicable example for green supplier selection in green supply chain management to prove the proposed methods.