Download Free Linear Programming And Generalizations Book in PDF and EPUB Free Download. You can read online Linear Programming And Generalizations and write the review.

This book on constrained optimization is novel in that it fuses these themes: • use examples to introduce general ideas; • engage the student in spreadsheet computation; • survey the uses of constrained optimization;. • investigate game theory and nonlinear optimization, • link the subject to economic reasoning, and • present the requisite mathematics. Blending these themes makes constrained optimization more accessible and more valuable. It stimulates the student’s interest, quickens the learning process, reveals connections to several academic and professional fields, and deepens the student’s grasp of the relevant mathematics. The book is designed for use in courses that focus on the applications of constrained optimization, in courses that emphasize the theory, and in courses that link the subject to economics.
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Goal programming is one of the most widely used methodologies in operations research and management science, and encompasses most classes of multiple objective programming models. Ignizio provides a concise and lucid overview of (a) the linear goal programming model, (b) a computationally efficient algorithm for solution, (c) duality and sensitivity analysis and (d) extensions of the methodology to integer as well as non-linear models.
Designed both for those who seek an acquaintance with dynamic programming and for those wishing to become experts, this text is accessible to anyone who's taken a course in operations research. It starts with a basic introduction to sequential decision processes and proceeds to the use of dynamic programming in studying models of resource allocation. Subsequent topics include methods for approximating solutions of control problems in continuous time, production control, decision-making in the face of an uncertain future, and inventory control models. The final chapter introduces sequential decision processes that lack fixed planning horizons, and the supplementary chapters treat data structures and the basic properties of convex functions. 1982 edition. Preface to the Dover Edition.
This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".