Download Free Linear Fractional Diffusion Wave Equation For Scientists And Engineers Book in PDF and EPUB Free Download. You can read online Linear Fractional Diffusion Wave Equation For Scientists And Engineers and write the review.

This book systematically presents solutions to the linear time-fractional diffusion-wave equation. It introduces the integral transform technique and discusses the properties of the Mittag-Leffler, Wright, and Mainardi functions that appear in the solutions. The time-nonlocal dependence between the flux and the gradient of the transported quantity with the “long-tail” power kernel results in the time-fractional diffusion-wave equation with the Caputo fractional derivative. Time-nonlocal generalizations of classical Fourier’s, Fick’s and Darcy’s laws are considered and different kinds of boundary conditions for this equation are discussed (Dirichlet, Neumann, Robin, perfect contact). The book provides solutions to the fractional diffusion-wave equation with one, two and three space variables in Cartesian, cylindrical and spherical coordinates. The respective sections of the book can be used for university courses on fractional calculus, heat and mass transfer, transport processes in porous media and fractals for graduate and postgraduate students. The volume will also serve as a valuable reference guide for specialists working in applied mathematics, physics, geophysics and the engineering sciences.
Complex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This fourth volume collects authoritative chapters covering several applications of fractional calculus in physics, including classical and continuum mechanics.
This monograph provides a comprehensive overview of the author's work on the fields of fractional calculus and waves in linear viscoelastic media, which includes his pioneering contributions on the applications of special functions of the Mittag-Leffler and Wright types. It is intended to serve as a general introduction to the above-mentioned areas of mathematical modeling. The explanations in the book are detailed enough to capture the interest of the curious reader, and complete enough to provide the necessary background material needed to delve further into the subject and explore the research literature given in the huge general bibliography. This book is likely to be of interest to applied scientists and engineers.
This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems. This Special Issue explores applications of such systems to control, synchronization, and various mathematical models, as for instance, MRI, long memory process, diffusion.
This book collects papers from the 8th Conference on Non-Integer Order Calculus and Its Applications that have been held on September 20-21, 2016 in Zakopane, Poland. The preceding two conferences were held in Szczecin, Poland in 2015, and in Opole, Poland, in 2014. This conference provides a platform for academic exchange on the theory and application of fractional calculus between domestic and international universities, research institutes, corporate experts and scholars. The Proceedings of the 8th Conference on Non-Integer Order Calculus and Its Applications 2016 brings together rigorously reviewed contributions from leading international experts. The included papers cover novel various important aspects of mathematical foundations of fractional calculus, modeling and control of fractional systems as well as controllability, detectability, observability and stability problems for this systems.
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus. Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard–Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue was to establish a brief collection of carefully selected articles authored by promising young scientists and the world's leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focusing on the study of analytical and numerical mathematical methods for pure and applied sciences.