Download Free Linear Equations In Banach Spaces Book in PDF and EPUB Free Download. You can read online Linear Equations In Banach Spaces and write the review.

INTRODUCTION . . . . . . xiii § 1. LINEAR EQUATIONS. BASIC NOTIONS . 3 § 2. EQUATIONS WITH A CLOSED OPERATOR 6 § 3. THE ADJOINT EQUATION . . . . . . 10 § 4. THE EQUATION ADJOINT TO THE FACTORED EQUATION. 17 § 5. AN EQUATION WITH A CLOSED OPERATOR WHICH HAS A DENSE DOMAIN 18 NORMALLY SOLVABLE EQUATIONS WITH FINITE DIMENSIONAL KERNEL. 22 § 6. A PRIORI ESTIMATES .. . . . . . 24 § 7. EQUATIONS WITH FINITE DEFECT . . . 27 § 8. § 9. SOME DIFFERENT ADJOINT EQUATIONS . 30 § 10. LINEAR TRANSFORMATIONS OF EQUATIONS 33 TRANSFORMATIONS OF d-NORMAL EQUATIONS . 38 § 11. § 12. NOETHERIAN EQUATIONS. INDEX. . . . . . 42 § 13. EQUATIONS WITH OPERATORS WHICH ACT IN A SINGLE SPACE 44 § 14. FREDHOLM EQUATIONS. REGULARIZATION OF EQUATIONS 46 § 15. LINEAR CHANGES OF VARIABLE . . . . . . . . 50 § 16. STABILITY OF THE PROPERTIES OF AN EQUATION 53 OVERDETERMINED EQUATIONS 59 § 17. § 18. UNDETERMINED EQUATIONS 62 § 19. INTEGRAL EQUATIONS . . . 65 DIFFERENTIAL EQUATIONS . 80 § 20. APPENDIX. BASIC RESULTS FROM FUNCTIONAL ANALYSIS USED IN THE TEXT 95 LITERATURE CITED . . . . . . . . . . . . . . . . . . .. . . . 99 . . PRE F ACE The basic material appearing in this book represents the substance v of a special series of lectures given by the author at Voronez University in 1968/69, and, in part, at Dagestan University in 1970.
This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.
This work presents a detailed study of linear abstract degenerate differential equations, using both the semigroups generated by multivalued (linear) operators and extensions of the operational method from Da Prato and Grisvard. The authors describe the recent and original results on PDEs and algebraic-differential equations, and establishes the analyzability of the semigroup generated by some degenerate parabolic operators in spaces of continuous functions.
Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.
This classic work by the late Stefan Banach has been translated into English so as to reach a yet wider audience. It contains the basics of the algebra of operators, concentrating on the study of linear operators, which corresponds to that of the linear forms a1x1 + a2x2 + ... + anxn of algebra.The book gathers results concerning linear operators defined in general spaces of a certain kind, principally in Banach spaces, examples of which are: the space of continuous functions, that of the pth-power-summable functions, Hilbert space, etc. The general theorems are interpreted in various mathematical areas, such as group theory, differential equations, integral equations, equations with infinitely many unknowns, functions of a real variable, summation methods and orthogonal series.A new fifty-page section (``Some Aspects of the Present Theory of Banach Spaces'') complements this important monograph.
Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.
Regularization methods aimed at finding stable approximate solutions are a necessary tool to tackle inverse and ill-posed problems. Inverse problems arise in a large variety of applications ranging from medical imaging and non-destructive testing via finance to systems biology. Many of these problems belong to the class of parameter identification problems in partial differential equations (PDEs) and thus are computationally demanding and mathematically challenging. Hence there is a substantial need for stable and efficient solvers for this kind of problems as well as for a rigorous convergence analysis of these methods. This monograph consists of five parts. Part I motivates the importance of developing and analyzing regularization methods in Banach spaces by presenting four applications which intrinsically demand for a Banach space setting and giving a brief glimpse of sparsity constraints. Part II summarizes all mathematical tools that are necessary to carry out an analysis in Banach spaces. Part III represents the current state-of-the-art concerning Tikhonov regularization in Banach spaces. Part IV about iterative regularization methods is concerned with linear operator equations and the iterative solution of nonlinear operator equations by gradient type methods and the iteratively regularized Gauß-Newton method. Part V finally outlines the method of approximate inverse which is based on the efficient evaluation of the measured data with reconstruction kernels.