Download Free Linear And Nonlinear Optical Properties Of Novel Organic Crystals Book in PDF and EPUB Free Download. You can read online Linear And Nonlinear Optical Properties Of Novel Organic Crystals and write the review.

Nonlinear Optical Properties of Organic Molecules and Crystals, Volume 1 discusses the nonlinear optical effects in organic molecules and crystals, providing a classical distinction between quadratic and cubic processes. This book begins with a general overview of the basic properties of organic matter, followed by a review on the benefits derived from quantum-chemistry-based models and growth and characterization of high quality, bulk organic crystals and waveguided structures. A case study focusing on a specific material, namely urea, which exemplifies a situation in which transparency in the UV region has been purposely traded for nonlinear efficiency is also deliberated. This text concludes with a description of a type of trade-off between the unpredictable orientation of molecules in crystalline media, polarity of liquid-crystalline structures, and dominant electronic contribution to the electro-optic effect. This publication is beneficial to solid-state physicists and chemists concerned with nonlinear optical properties of organic molecules and crystals.
Organic Nonlinear Optical Materials provides an extensive description of the preparation and characterization of organic materials for applications in nonlinear and electro-optics. The book discusses the fundamental optimization and practical limitations of a number of figures of merit for various optical parameters and gives a clinical appraisal of the potential of organic materials for applicators in optical technology. Among the topics addressed are the basic molecular design of ;nonlinear optical chromophores, fundamentals and novel techniques of organic crystal growth, preparation and characterization of Langmuir-Blodgett and polymer films, experimental methods for determining microscopic and macroscopic optical properties. Also included is a discussion of first results of the photorefractive effect in organic crystals and the potential of organics for photorefractive applications, as well as an extensive review of published linear and nonlinear optical measurement of organic materials.
Crystals are the unacknowledged pillars of modern technology. The modern technological developments depend greatly on the availability of suitable single crystals, whether it is for lasers, semiconductors, magnetic devices, optical devices, superconductors, telecommunication, etc. In spite of great technological advancements in the recent years, we are still in the early stage with respect to the growth of several important crystals such as diamond, silicon carbide, PZT, gallium nitride, and so on. Unless the science of growing these crystals is understood precisely, it is impossible to grow them as large single crystals to be applied in modern industry. This book deals with almost all the modern crystal growth techniques that have been adopted, including appropriate case studies. Since there has been no other book published to cover the subject after the Handbook of Crystal Growth, Eds. DTJ Hurle, published during 1993-1995, this book will fill the existing gap for its readers. The book begins with "Growth Histories of Mineral Crystals" by the most senior expert in this field, Professor Ichiro Sunagawa. The next chapter reviews recent developments in the theory of crystal growth, which is equally important before moving on to actual techniques. After the first two fundamental chapters, the book covers other topics like the recent progress in quartz growth, diamond growth, silicon carbide single crystals, PZT crystals, nonlinear optical crystals, solid state laser crystals, gemstones, high melting oxides like lithium niobates, hydroxyapatite, GaAs by molecular beam epitaxy, superconducting crystals, morphology control, and more. For the first time, the crystal growth modeling has been discussed in detail with reference to PZT and SiC crystals.
Nonlinear Optical Crystals contains the most complete and up-to-date reference material on properties of nonlinear optical crystals including: Traditional and specific applications The mathematical formulas necessary for the calculation of the frequency conversion process A survey of 63 nonlinear optical crystals containing more than 1500 different references with full titles Recent applications of common and novel nonlinear materials, including quasi-phase matching Special consideration for periodically-poled and self-frequency-doubling materials Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information
: This book is based on research conducted on the growth and characterization of nonlinear optical crystals. Due to the significance of crystals in contemporary technology, crystal growth has been the focus of extensive research in both solid-state physics and materials science. This book serves as an introduction to the growth phenomena, specifics of growth processes, nonlinear optical phenomena, and characterization methods that are being used for the analysis. The book is divided into three chapters: The first chapter focuses on the experimental techniques of crystal growth. It outlines the several ways that crystals grow based on the phases they go through, such as solid-solid phase transition, liquid-solid phase transformation, and vapour-solid phase transformation. The optimization methods for growing high-quality single crystals are thoroughly presented. The benefits and drawbacks of methods of growth are reviewed. The second chapter explains the theory of nonlinear optical phenomena. The selection criteria for nonlinear optical materials are reviewed. The history of nonlinear optics and the various types of nonlinear optical materials are discussed. The role of amino acids in the formation of nonlinear optical crystals is well explained. The third chapter discusses characterization procedures that are essential in determining the quality of crystals. The several characterization mechanisms including the molecular structure, chemical composition, surface morphology, optical properties, dielectric properties, mechanical behavior, and thermal properties necessary for crystal analysis are described. We hope that this book will be valuable to researchers and students.
Photonics is being labelled by many as the technology for the 21st century. Because of the structural flexibility both at the molecular and bulk levels, organic materials are emerging as a very important class of nonlinear optical materials to be used for generating necessary nonlinear optical functions for the technology of photonics. Since the last NATO advanced research workshop on "Polymers for Nonlinear Optics"held in June 1988, at Nice - Sophia Antipolis, France. there has been a tremendous growth of interest worldwide and important development in this field. Significant progress has been made in theoretical modeling, material development, experimental studies and device concepts utilizing organic materials. These important recent developments provided the rationale for organizing the workshop on "Organic Materials for Nonlinear Optics and Photonics" which was held in La Rochelle, France, in August 1990. This proceeding is the outcome of the workshop held in La Rochelle. The objective of the workshop was to bring together scientists and engineers of varied backgrounds working in this field in order to assess the current status of this field by presenting significant recent developments and make recommendations on future directions of research. The workshop was multidisciplinary as it had contributions from chemists, physicists, materials scientists and device engineers. The participants were both from industries and universities. The workshop included plenary lectures by leading international scientists in this field, contributed research papers and a poster session. Panel discussion groups were organized to summarize important developments and to project future directions.
Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.
Examining classic theories, experimental methods, and practical formulas for exploration of the core topics in nonlinear optics, the second edition of this acclaimed text was extensively revised to reflect recent advances in the analysis and modification of material properties for application in frequency conversion, optical switching and limiting, multiphoton absorption, and electro-optic effects. Handbook of Nonlinear Optics, Second Edition contains additional chapters on ultrafast characterization techniques, laser flash photolysis, and the electro-optic effect as well as expanded coverage of nonlinear optics in fibers and pulsed two-beam coupling.
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Describing progress achieved in the field of nonlinear optics and nonlinear optical materials, the Handbook treats selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crystals, as well as electro-optic polymers. Applications of photorefractive materials in optical memories, optical processing, and guided-wave nonlinear optics in hotorefractive waveguides are described. As light will play a more and more dominant role as an information carrier, the review of existing and new materials given here makes this a keystone book in the field.