Download Free Linear Algebra Research Advances Book in PDF and EPUB Free Download. You can read online Linear Algebra Research Advances and write the review.

This book presents original studies on the leading edge of linear algebra. Each chapter has been carefully selected in an attempt to present substantial research results across a broad spectrum. The main goal of Chapter One is to define and investigate the restricted generalized inverses corresponding to minimization of constrained quadratic form. As stated in Chapter Two, in systems and control theory, Linear Time Invariant (LTI) descriptor (Differential-Algebraic) systems are intimately related to the matrix pencil theory. A review of the most interesting properties of the Projective Equivalence and the Extended Hermite Equivalence classes is presented in the chapter. New determinantal representations of generalized inverse matrices based on their limit representations are introduced in Chapter Three. Using the obtained analogues of the adjoint matrix, Cramer's rules for the least squares solution with the minimum norm and for the Drazin inverse solution of singular linear systems have been obtained in the chapter. In Chapter Four, a very interesting application of linear algebra of commutative rings to systems theory, is explored. Chapter Five gives a comprehensive investigation to behaviors of a general Hermitian quadratic matrix-valued function by using ranks and inertias of matrices. In Chapter Six, the theory of triangular matrices (tables) is introduced. The main "characters" of the chapter are special triangular tables (which will be called triangular matrices) and their functions paradeterminants and parapermanents. The aim of Chapter Seven is to present the latest developments in iterative methods for solving linear matrix equations. The problems of existence of common eigenvectors and simultaneous triangularization of a pair of matrices over a principal ideal domain with quadratic minimal polynomials are investigated in Chapter Eight. Two approaches to define a noncommutative determinant (a determinant of a matrix with noncommutative elements) are considered in Chapter Nine. The last, Chapter 10, is an example of how the methods of linear algebra are used in natural sciences, particularly in chemistry. In this chapter, it is shown that in a First Order Chemical Kinetics Mechanisms matrix, all columns add to zero, all the diagonal elements are non-positive and all the other matrix entries are non-negative. As a result of this particular structure, the Gershgorin Circles Theorem can be applied to show that all the eigenvalues are negative or zero.
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra
This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.
Linear algebra is the branch of mathematics concerned with the study of vectors, vector spaces (also called linear spaces), linear maps (also called linear transformations), and systems of linear equations. Vector spaces are a central theme in modern mathematics; thus, linear algebra is widely used in both abstract algebra and functional analysis. Linear algebra also has a concrete representation in analytic geometry and it is generalised in operator theory. It has extensive applications in the natural sciences and the social sciences, since non-linear models can often be approximated by linear ones.
"Linear algebra is the branch of mathematics concerning vector spaces and linear mappings between such spaces. Systems of linear equations with several unknowns are naturally represented using the formalism of matrices and vectors. So we arrive at the matrix algebra, etc. Linear algebra is central to almost all areas of mathematics. Many ideas and methods of linear algebra were generalized to abstract algebra. Functional analysis studies the infinite-dimensional version of the theory of vector spaces. Combined with calculus, linear algebra facilitates the solution of linear systems of differential equations. Linear algebra is also used in most sciences and engineering areas because it allows for the modeling of many natural phenomena, and efficiently computes with such models. "Hot Topics in Linear Algebra" presents original studies in some areas of the leading edge of linear algebra. Each article has been carefully selected in an attempt to present substantial research results across a broad spectrum. Topics discussed herein include recent advances in analysis of various dynamical systems based on the Gradient Neural Network; Cramer's rules for quaternion generalized Sylvester-type matrix equations by using noncommutative row-column determinants; matrix algorithms for finding the generalized bisymmetric solution pair of general coupled Sylvester-type matrix equations; explicit solution formulas of some systems of mixed generalized Sylvester-type quaternion matrix equations; new approaches to studying the properties of Hessenberg matrices by using triangular tables and their functions; researching of polynomial matrices over a field with respect to semi-scalar equivalence; mathematical modeling problems in chemistry with applying mixing problems, which the associated MP-matrices; and some visual apps, designed in Scilab, for the learning of different topics of linear algebra"--
A thorough development of a topic at the core of mathematics, ideal for graduate students and professional mathematicians.
Advanced Linear Algebra features a student-friendly approach to the theory of linear algebra. The author’s emphasis on vector spaces over general fields, with corresponding current applications, sets the book apart. He focuses on finite fields and complex numbers, and discusses matrix algebra over these fields. The text then proceeds to cover vector spaces in depth. Also discussed are standard topics in linear algebra including linear transformations, Jordan canonical form, inner product spaces, spectral theory, and, as supplementary topics, dual spaces, quotient spaces, and tensor products. Written in clear and concise language, the text sticks to the development of linear algebra without excessively addressing applications. A unique chapter on "How to Use Linear Algebra" is offered after the theory is presented. In addition, students are given pointers on how to start a research project. The proofs are clear and complete and the exercises are well designed. In addition, full solutions are included for almost all exercises.
This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student. Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed. This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.
Advanced Linear Algebra focuses on vector spaces and the maps between them that preserve their structure (linear transformations). It starts with familiar concepts and then slowly builds to deeper results. Along with including many exercises and examples, each section reviews what students need to know before studying the material. The book first introduces vector spaces over fields as well as the fundamental concepts of linear combinations, span of vectors, linear independence, basis, and dimension. After covering linear transformations, it discusses the algebra of polynomials with coefficients in a field, concentrating on results that are consequences of the division algorithm. The author then develops the whole structure theory of a linear operator on a finite dimensional vector space from a collection of some simple results. He also explores the entire range of topics associated with inner product spaces, from the Gram–Schmidt process to the spectral theorems for normal and self-adjoint operators on an inner product space. The text goes on to rigorously describe the trace and determinant of linear operators and square matrices. The final two chapters focus on bilinear forms and tensor products and related material. Designed for advanced undergraduate and beginning graduate students, this textbook shows students the beauty of linear algebra. It also prepares them for further study in mathematics.