Download Free Linear Algebra Concepts And Methods Book in PDF and EPUB Free Download. You can read online Linear Algebra Concepts And Methods and write the review.

Any student of linear algebra will welcome this textbook, which provides a thorough treatment of this key topic. Blending practice and theory, the book enables the reader to learn and comprehend the standard methods, with an emphasis on understanding how they actually work. At every stage, the authors are careful to ensure that the discussion is no more complicated or abstract than it needs to be, and focuses on the fundamental topics. The book is ideal as a course text or for self-study. Instructors can draw on the many examples and exercises to supplement their own assignments. End-of-chapter sections summarise the material to help students consolidate their learning as they progress through the book.
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
The pebbles used in ancient abacuses gave their name to the calculus, which today is a fundamental tool in business, economics, engineering and the sciences. This introductory book takes readers gently from single to multivariate calculus and simple differential and difference equations. Unusually the book offers a wide range of applications in business and economics, as well as more conventional scientific examples. Ideas from univariate calculus and linear algebra are covered as needed, often from a new perspective. They are reinforced in the two-dimensional case, which is studied in detail before generalisation to higher dimensions. Although there are no theorems or formal proofs, this is a serious book in which conceptual issues are explained carefully using numerous geometric devices and a wealth of worked examples, diagrams and exercises. Mathematica has been used to generate many beautiful and accurate, full-colour illustrations to help students visualise complex mathematical objects. This adds to the accessibility of the text, which will appeal to a wide audience among students of mathematics, economics and science.
Any student of linear algebra will welcome this textbook, which provides a thorough treatment of this key topic. Blending practice and theory, the book enables the reader to learn and comprehend the standard methods, with an emphasis on understanding how they actually work. At every stage, the authors are careful to ensure that the discussion is no more complicated or abstract than it needs to be, and focuses on the fundamental topics. The book is ideal as a course text or for self-study. Instructors can draw on the many examples and exercises to supplement their own assignments. End-of-chapter sections summarise the material to help students consolidate their learning as they progress through the book.
In this appealing and well-written text, Richard Bronson starts with the concrete and computational, and leads the reader to a choice of major applications. The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced and key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. Prerequisite: One year of calculus is recommended. - Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs - Provides a balanced approach to computation and theory by offering computational algorithms for finding eigenvalues and eigenvectors - Offers excellent exercise sets, ranging from drill to theoretical/challeging along with useful and interesting applications not found in other introductory linear algebra texts
This is an introductory textbook designed for undergraduate mathematics majors with an emphasis on abstraction and in particular, the concept of proofs in the setting of linear algebra. Typically such a student would have taken calculus, though the only prerequisite is suitable mathematical grounding. The purpose of this book is to bridge the gap between the more conceptual and computational oriented undergraduate classes to the more abstract oriented classes. The book begins with systems of linear equations and complex numbers, then relates these to the abstract notion of linear maps on finite-dimensional vector spaces, and covers diagonalization, eigenspaces, determinants, and the Spectral Theorem. Each chapter concludes with both proof-writing and computational exercises.
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.
Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. 1952 edition.