Download Free Linear Accelerators For Radiation Therapy Book in PDF and EPUB Free Download. You can read online Linear Accelerators For Radiation Therapy and write the review.

Linear Accelerators for Radiation Therapy, Second Edition focuses on the fundamentals of accelerator systems, explaining the underlying physics and the different features of these systems. This edition includes expanded sections on the treatment head, on x-ray production via multileaf and dynamic collimation for the production of wedged and other i
By the mid-1950s, a linear accelerator suitable for treating deep-seated tumors was built in the Stanford Microwave Laboratory and installed at Stanford Hospital. It served as a prototype for commercial units that were built later. Since that time, medical linear accelerators gained in popularity as major radiation therapy devices, but few basic training materials on their operation had been produced for use by medical professionals. C.J. Karzmark, a radiological physicist at Stanford University, was involved with medical linacs since their development, and he agreed to collaborate with Robert Morton of the Center for Devices and Radiological Health (formerly the Bureau of Radiological Health), U.S. Food and Drug Administration, in writing the first edition of this primer.
This book addresses the most relevant aspects of radiation oncology in terms of technical integrity, dose parameters, machine and software specifications, as well as regulatory requirements. Radiation oncology is a unique field that combines physics and biology. As a result, it has not only a clinical aspect, but also a physics aspect and biology aspect, all three of which are inter-related and critical to optimal radiation treatment planning. In addition, radiation oncology involves a host of machines/software. One needs to have a firm command of these machines and their specifications to deliver comprehensive treatment. However, this information is not readily available, which poses serious challenges for students learning the planning aspect of radiation therapy. In response, this book compiles these relevant aspects in a single source. Radiation oncology is a dynamic field, and is continuously evolving. However, tracking down the latest findings is both difficult and time-consuming. Consequently, the book also comprehensively covers the most important trials. Offering an essential ready reference work, it represents a value asset for all radiation oncology practitioners, trainees and students.
Organized to serve as a ready reference, this book covers the design & principles of operation of microwave electron linear accelerators for the radiation treatment of cancer. Designed for use by persons without extensive knowledge & experience of accelerator technology, the book assumes a knowledge of elementary physics & mathematics & places its emphasis on how accelerators actually function & how they are used in cancer treatment. Coverage includes the history of development & application, general theory of acceleration, accelerator systems, radiation beam systems & associated equipment, performance characteristics, testing & use. The major modules of a representative medical accelerator are described, including principles of operation & how these models function collectively to produce electron & X-ray beams for radiotherapy.
This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. You find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner. This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.
Modern medical imaging and radiation therapy technologies are so complex and computer driven that it is difficult for physicians and technologists to know exactly what is happening at the point-of-care. Medical physicists responsible for filling this gap in knowledge must stay abreast of the latest advances at the intersection of medical imaging an
Stereotactic body radiation therapy (SBRT) has emerged as an important innovative treatment for various primary and metastatic cancers. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.
Electron linear accelerators are being used throughout the world in increasing numbers in a variety of important applications. Foremost among these is their role in the treatment of cancer. Commercial uses include non-destructive testing by radiography, food preservation, product sterilization and radiation processing of materials such as plastics and adhesives. Scientific applications include investigations in radiation biology, radiation chemistry, nuclear and elementary particle physics and radiation research. This manual provides authoritative guidance in radiation protection for this important category of radiation sources.
This comprehensive encyclopedia, comprising a wide range of entries written by leading experts, provides detailed information on radiation oncology, including the most recent developments in the field. It will be of particular value for basic and clinical scientists in academia, practice, and industry and will also be of benefit to those in related fields, students, teachers, and interested laypersons.