Download Free Lignocellulosic Biomass In Biotechnology Book in PDF and EPUB Free Download. You can read online Lignocellulosic Biomass In Biotechnology and write the review.

This book covers the utilization of lignocellulosic biomass for biofuel production as well as other industrial applications such as in biotechnology, paper and pulp, chemical and bioplastics. Lignocellulosic materials such as agricultural residues (e.g., wheat straw, sugarcane bagasse, corn stover), forest products (hardwood and softwood), and crops such as switchgrass and salix, are becoming a potent source for generating valuable products. Lignocellulosic Biomass Production and Industrial Applications describes the utilization of lignocellulosic biomass for various applications. Although there have been numerous reports on lignocellulosic biomass for biofuel application, there have been very few other applications reported for lignocellulosic biomass-based biotechnology, chemicals and polymers. This book covers both application areas. Besides describing the various types of biofuel production, such as bioethanol, biobutanol, biodiesel and biogas from lignocellulosic biomass, it also presents various other lignocellulosic biomass biorefinery applications for the production of enzymes, chemicals, polymers, paper and bioplastics. In addition, there are chapters on valorization of lignocellulosic materials, alkali treatment to improve the physical, mechanical and chemical properties of lignocellulosic natural fibers, and a discussion of the major benefits, limitations and future prospects of the use of lignocellulosic biomass.
This book presents and summarizes the new thoughts, new methods and new achievements that have emerged in the biotechnology of lignocellulose in recent years. It proposes new concepts including the primary refining, fractionation, multi-level utilization and selective structural separation of lignocellulose, etc. By approaching lignocellulose as a multi-level resource, biotechnology could have a significant effect on ecological agriculture, bio-energy, the chemical and paper making industries, etc., ultimately establishing distinctive eco-industrial parks for lignocellulose. Additionally, this book provides systematic research methods for the biotechnology of lignocellulose including investigation methods for the primary refining of lignocellulose, for microbial degradation and enzymatic hydrolysis, for cellulose fermentation and for lignocellulose conversion processes. It offers an excellent reference work and guide for scientists engaging in research on lignocellulose. Dr. Hongzhang Chen is a Professor at the Institute of Process Engineering of the Chinese Academy of Sciences, Beijing, China.
Biomass Fractionation Technologies for a Lignocellulosic Feedstock-based Biorefinery reviews the extensive research and tremendous scientific and technological developments that have occurred in the area of biorefinering, including industrial processes and product development using 'green technologies', often referred as white biotechnology. As there is a huge need for new design concepts for modern biorefineries as an alternative and amendment to industrial crude oil and gas refineries, this book presents the most important topics related to biomass fractionation, including advances, challenges, and perspectives, all with references to current literature for further study. Presented in 26 chapters by international field specialists, each chapter consists of review text that comprises the most recent advances, challenges, and perspectives for each fractionation technique. The book is an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Reviews numerous valuable products from lignocellulose - Discusses integration of processes for complete biomass conversion with minimum waste generation - Identifies the research gaps in scale-up - Presents an indispensable reference for all professionals, students, and workers involved in biomass biorefinery, assisting them in establishing efficient and economically viable process technologies for biomass fractionation
The book describes the pretreatment of lignocellulosic biomass for biomass-to-biofuel conversion processes, which is an important step in increasing ethanol production for biofuels. It also highlights the main challenges and suggests possible ways to make these technologies feasible for the biofuel industry. The biological conversion of cellulosic biomass into bioethanol is based on the chemical and biological breakdown of biomass into aqueous sugars, for example using hydrolytic enzymes. The fermentable sugars can then be further processed into ethanol or other advanced biofuels. Pretreatment is required to break down the lignin structure and disrupt the crystalline structure of cellulose so that the acids or enzymes can easily access and hydrolyze the cellulose. Pre-treatment can be the most expensive process in converting biomass to fuel, but there is great potential for improving the efficiency and lowering costs through further research and development. This book is aimed at academics and industrial practitioners who are interested in the higher production of ethanol for biofuels.
A text to the advances and development of novel technologies in the production of high-value products from economically viable raw materials Lignocellulosic Biorefining Technologiesis an essential guide to the most recent advances and developments of novel technologies in the production of various high-value products from economically viable raw materials. Written by a team of experts on the topic, the book covers important topics specifically on production of economical and sustainable products such as various biofuels, organic acids, enzymes, biopigments, biosurfactants, etc. The book highlights the important aspects of lignocellulosic biorefining including structure, function, and chemical composition of the plant cell wall and reviews the details about the various components present in the lignocellulosic biomass and their characterizations. The authors explore the various approaches available for processing lignocellulosic biomass into second generation sugars and focus on the possibilities of utilization of lignocellulosic feedstocks for the production of biofuels and biochemicals. Each chapter includes a range of clear, informative tables and figures, and contains relevant references of published articles. This important text: Provides cutting-edge information on the recent developments in lignocellulose biorefinery Reviews production of various economically important and sustainable products, such as biofuels, organic acids, biopigments, and biosurfactants Highlights several broad-ranging areas of recent advances in the utilization of a variety of lignocellulosic feedstocks Provides a valuable, authoritative reference for anyone interested in the topic Written for post-graduate students and researchers in disciplines such as biotechnology, bioengineering, forestry, agriculture, and chemical industry, Lignocellulosic Biorefining Technologies is an authoritative and updated guide to the knowledge about various biorefining technologies.
Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass
Lignocellulosic Biomass in Biotechnology highlights significant aspects of lignocellulose biotechnology, demonstrating its potential value from an application perspective. Sections cover the physico-chemical characteristics of lignocellulosic biomass, the physical and structural properties of hemicelluloses, celluloses and lignin, sources of lignocellulosic biomass , microorganisms and their lignocellulytic enzymes, enzymatic degradation of lignocellulosic biomass, regulation of cell-wall degrading enzymes, barriers to lignocellulose biodegradation, biotechnological importance of lignocellulosic biomass, lignocellulosic pretreatment techniques, bioprocessing of lignocellulosic biomass, lignocellulosic biomass pretreatment methods, valuable chemicals and products, techno-economic evaluation and future perspectives. This book answers questions surrounding the biotechnology of lignocelluloses. It is ideal for both students and professionals in the industry supply chain. It also provides a reference for researchers and administrators engaged in the utilization and industrial development of agricultural resources. - Presents recent advances in the processing of lignocellulosic biomass - Highlights significant aspects of lignocelluloses biotechnology, with an emphasis on its potential value from an application perspective - Looks at the cost of enzymes and the potential of modern approaches that could be employed to reduce the cost - Summarizes the new achievements that have emerged in the biotechnology of lignocelluloses in recent years - Discusses a wide range of topics related to the fundamental and applied aspects of lignocellulose utilization, processing and biotechnological applications
Harnessing fungi’s enzymatic ability to break down lignocellulolytic biomass to produce ethanol more efficiently and cost-effectively has become a significant research and industrial interest. Fungi and Lignocellulosic Biomass provides readers with a broad range of information on the uses and untapped potential of fungi in the production of bio-based fuels. With information on the molecular biological and genomic aspects of fungal degradation of plant cell walls to the industrial production and application of key fungal enzymes, chapters in the book cover topics such as enzymology of cellulose, hemicelluloses, and lignin degradation. Edited by a leading researcher in the field, Fungi and Lignocellulosic Biomass will be a valuable tool in advancing the development and production of biofuels and a comprehensive resource for fungal biologists, enzymologists, protein chemists, biofuels chemical engineers, and other research and industry professionals in the field of biomass research.
Lignocellulosic Biomass to Value-Added Products: Fundamental Strategies and Technological Advancements focuses on fundamental and advanced topics surrounding technologies for the conversion process of lignocellulosic biomass. Each and every concept related to the utilization of biomass in the process of conversion is elaborately explained, with importance given to minute details. Advanced level technologies involved in the conversion of biomass into biofuels, like bioethanol and biobutanol, are addressed, along with the process of pyrolysis. Readers of this book will become fully acquainted with the field of lignocellulosic conversion, from its basics to current research accomplishments. The uniqueness of the book lies in the fact that it covers each and every topic related to biomass and its conversion into value-added products. Technologies involved in the major areas of pretreatment, hydrolysis and fermentation are explained precisely. Additional emphasis is given to the analytical part, especially the established protocols for rapid and accurate quantification of total sugars obtained from lignocellulosic biomass. - Includes chapters arranged in a flow-through manner - Discusses mechanistic insights in different phenomena using colorful figures for quick understanding - Provides the most up-to-date information on all aspects of the conversion of individual components of lignocellulosic biomass
The agricultural and forestry processing wastes (lignocellulosics) are an important material resource and energy source. However, if untreated they can pose a danger to the environment and potentially valuable resources. Microorganisms contribute significantly to solving the problem of biomass degradation, its recycling and conservation. In the recent years, an increasing interest shown by the textile, food, feed & pulp, and paper industries in the microbial and enzymatic processes has triggered in-depth studies of lignocellulolytic microorganisms and their enzymes. Moreover, the advent of recombinant DNA technology in the late 1970s further paved the way for developing technologies based on lignocellulolytic microbes and enzymes. Lignocellulose Biotechnology presents a comprehensive review of the research directed towards environmentally friendly agricultural and forest by-products. The book comprises 22 chapters, divided in four sections. It deals with a wide range of topics including biodiversity of lignocellulose degrading microorganisms and their enzymes, molecular biology of biodegradation of lignin, characterization of lignocellulolytic enzymes, bioconversion of plant biomass to produce enzymes, animal feed, bioethanol and industrial applications of lignocellulolytic enzymes. The chapters dealing with industrial applications also address current biotechnological approaches in lignocellulose bioconversion to value added products. This book is essential for students, researchers, scientists, and engineers working in the fields of environmental microbiology, environmental biotechnology, life sciences, waste management, and biomaterials.