Download Free Lightning Protection Guidelines For Aerospace Vehicles Book in PDF and EPUB Free Download. You can read online Lightning Protection Guidelines For Aerospace Vehicles and write the review.

This technical memorandum provides lightning protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of lightning. Generic descriptions of the lightning environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for lightning protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.Goodloe, C. C.Marshall Space Flight CenterLIGHTNING; PROTECTION; ELECTROMAGNETISM; ATMOSPHERIC ELECTRICITY; AEROSPACE VEHICLES; WAVEFORMS; ELECTRIC POTENTIAL; HARDWARE; FLIGHT INSTRUMENTS
This book is an attempt to present under one cover the current state of knowledge concerning the potential lightning effects on aircraft and that means that are available to designers and operators to protect against these effects. The impetus for writing this book springs from two sources- the increased use of nonmetallic materials in the structure of aircraft and the constant trend toward using electronic equipment to handle flight-critical control and navigation function.
A comprehensive resource that explores electromagnetic compatibility (EMC) for aerospace systems Handbook of Aerospace Electromagnetic Compatibility is a groundbreaking book on EMC for aerospace systems that addresses both aircraft and space vehicles. With contributions from an international panel of aerospace EMC experts, this important text deals with the testing of spacecraft components and subsystems, analysis of crosstalk and field coupling, aircraft communication systems, and much more. The text also includes information on lightning effects and testing, as well as guidance on design principles and techniques for lightning protection. The book offers an introduction to E3 models and techniques in aerospace systems and explores EMP effects on and technology for aerospace systems. Filled with the most up-to-date information, illustrative examples, descriptive figures, and helpful scenarios, Handbook of Aerospace Electromagnetic Compatibility is designed to be a practical information source. This vital guide to electromagnetic compatibility: • Provides information on a range of topics including grounding, coupling, test procedures, standards, and requirements • Offers discussions on standards for aerospace applications • Addresses aerospace EMC through the use of testing and theoretical approaches Written for EMC engineers and practitioners, Handbook of Aerospace Electromagnetic Compatibility is a critical text for understanding EMC for aerospace systems.
"This book is an attempt to present under one cover the current state of knowledge concerning the potential lightning effects on aircraft and the means that are available to [aircraft] designers and operators to protect against these effects."--p. iii.
This"know-how"book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline. Handbook of Electromagnetic Compatibility contains extensive treatment of EMC applications to radio and wireless communications, fiber optics communications, and plasma effects. Coverage of EMC-related issues includes lightning, electromagnetic pulse, biological effects, and electrostatic discharge. Practical examples are used to illustrate the material, and all information is presented in an accessible and organized format. The text is intended primarily for those practicing engineers who need agood foundation in EMC, but it will also interest faculty and students, since a good portion of the material covered can find use in the classroom or as a springboard for further research. - The chapters are written by experts in the field - Details the fundamental principles, then moves to more advanced topics - Covers computational electromagnetics applied to EMC problems - Presents an extensive treatment of EMC applications to: Radio and wireless communications, Fiber optic communications, Plasma effects, Wired circuits, Microchips, Includes practical examples, Fiber optic, Communications, Plasma effects, Wired circuits, Microchips, Includes practical examples
Polymer matrix composites are increasingly replacing traditional materials, such as metals, for applications in the aerospace, automotive and marine industries. Because of the relatively recent development of these composites there is extensive on-going research to improve the understanding and modelling of their behaviour – particularly their failure processes. As a consequence there is a strong demand among design engineers for the latest information on this behaviour in order to fully exploit the potential of these materials for a wide range of weight-sensitive applications. Failure mechanisms in polymer matrix composites explores the main types of composite failure and examines their implications in specific applications.Part one discusses various failure mechanisms, including a consideration of manufacturing defects and addressing a variety of loading forms such as impact and the implications for structural integrity. This part also reviews testing techniques and modelling methods for predicting potential failure in composites. Part two investigates the effects of polymer-matrix composite failure in a range of industries including aerospace, automotive and other transport, defence, marine and off-shore applications. Recycling issues and environmental factors affecting the use of composite materials are also considered.With its distinguished editors and international team of expert contributors Failure mechanisms in polymer matrix composites is a valuable reference for designers, scientists and research and development managers working in the increasing range of industries in which composite materials are extensively used. The book will also be a useful guide for academics studying in the composites field. - Discusses various failure mechanisms, including manufacturing defects - Reviews testing techniques and modelling methods for predicting potential failure - Investigates failure in aerospace, automotive, defence, marine and off-shore applications