Download Free Lighthouses Of The Universe The Most Luminous Celestial Objects And Their Use For Cosmology Book in PDF and EPUB Free Download. You can read online Lighthouses Of The Universe The Most Luminous Celestial Objects And Their Use For Cosmology and write the review.

The book reviews the present status of understanding the nature of the most luminous objects in the Universe, connected with supermassive black holes and supermassive stars, clusters of galaxies and ultraluminous galaxies, sources of gamma-ray bursts and relativistic jets. Leading experts give overviews of essential physical mechanisms involved, discuss formation and evolution of these objects as well as prospects for their use in cosmology, as probes of the intergalactic medium at high redshifts and as a tool to study the end of dark ages. The theoretical models are complemented by new exciting results from orbital and ground-based observatories such as Chandra, XMM-Newton, HST, SDSS, VLT, Keck, and many others.
This book provides an overview of many of the dramatic recent developments in the fields of astronomy, cosmology and fundamental physics. Topics include observations of the structure in the cosmic background radiation, evidence for an accelerating Universe, the extraordinary concordance in the fundamental parameters of the Universe coming from these and other diverse observations, the search for dark matter candidates, evidence for neutrino oscillations, space experiments on fundamental physics, and discoveries of extrasolar planets. This book will be useful for researchers and graduate students who wish to have a broad overview of the current developments in these fields.
Distance determination is an essential technique in astronomy, and is briefly covered in most textbooks on astrophysics and cosmology. It is rarely covered as a coherent topic in its own right. When it is discussed the approach is frequently very dry, splitting the teaching into, for example, stars, galaxies and cosmologies, and as a consequence, books lack depth and are rarely comprehensive. Adopting a unique and engaging approach to the subject An Introduction to distance Measurement in Astronomy will take the reader on a journey from the solar neighbourhood to the edge of the Universe, discussing the range of distance measurements methods on the way. The book will focus on the physical processes discussing properties that underlie each method, rather than just presenting a collection of techniques. As well as providing the most compressive account of distance measurements to date, the book will use the common theme of distance measurement to impart basic concepts relevant to a wide variety of areas in astronomy/astrophysics. The book will provide an updated account of the progress made in a large number of subfields in astrophysics, leading to improved distance estimates particularly focusing on the underlying physics. Additionally it will illustrate the pitfalls in these areas and discuss the impact of the remaining uncertainties in the complete understanding of the Universes at large. As a result the book will not only provide a comprehensive study of distance measurement, but also include many recent advances in astrophysics.
On May 18-21, 2004, the Max-Planck-Society’s Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century". The symposium was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting and discussing the fundamental scientific problems that will be addressed in the next few decades.
Supermassive black holes are now believed to play an important role in the evolution of the Universe. Every respectable galaxy hosts in its center a black hole that appears to regulate the growth of the galaxy itself. In this book, leading experts in the field review the most recent theoretical and observational results on the following topics: - formation and growth of the first black holes in the Universe and their role in the formation and evolution of galaxies - the physics of black-hole accretion and the production of relativistic jets - binary black-hole mergers and gravitational radiation. Theoretical work is supplemented by the most recent exciting results from space and ground based observatories. This volume is useful research and reference tool for the entire astrophysical community.
The year 2005, which marked the 100th anniversary of the 'annus mirabilis', the year in which Albert Einstein published three of his most important scientific papers, was the perfect opportunity to review and to present the current scientific understanding of relativistic topics. This book provides an up-to-date reference on the theory of gravity, relativistic astrophysics and cosmology. It is a useful reference tool for both the expert and the new-comer in these fields.
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.
The Encyclopedia of Cosmology is a new and exciting project which will be a major, long-lasting, seminal reference (a set of four major volumes) at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field of Cosmology of the Universe, covering both theory and observation.One of the most exciting parts of the encyclopedia is that it will exist in both print and, more importantly, electronic forms, perhaps even with some level of interactivity with material such as expanded explanations, movie clips, dynamic pictures, examples of on-line computation, etc. The electronic version will also reflect constant updates of the material. It will be a truly unique publication, unlike anything any of us have seen or known of in existence today.This comprehensive encyclopedia is edited by Dr. Giovanni Fazio from Harvard Smithsonian Center for Astrophysics, with an advisory board comprised of renowned scientists: Lars Hernquist and Abraham Loeb (Harvard Smithsonian Center for Astrophysics), and Christopher McKee (UC Berkeley). Each volume is authored/edited by a specialist in the area: Galaxy Formation and Evolution written by Rennan Barkana (Tel Aviv University), Numerical Simulations in Cosmology edited by Kentaro Nagamine (Osaka University / University of Nevada), Dark Energy written by Shinji Tsujikawa (Tokyo University of Science), and Dark Matter written by Jihn Kim (Seoul National University).
This volume contains the proceedings of possibly the last conference ever on integral-field spectroscopy. The contributors, noted authorities in the field, focus on the scientific questions that can be answered with integral-field spectroscopy, ranging from solar system studies all the way to high redshift surveys. Overall readers get a state-of-the-science review of astronomical 3D spectroscopy.