Download Free Light Transducing Membranes Book in PDF and EPUB Free Download. You can read online Light Transducing Membranes and write the review.

Light Transducing Membranes: Structure, Function, and Evolution covers the proceedings of a joint United States-Australia conference held in Honolulu, Hawaii on December 1977. Organized into four parts encompassing 19 chapters, the book focuses on structural, functional, and evolutionary aspects of light energy transduction by membranes. The first part of the book explores the problems of how membrane-related biomolecules could have evolved prior to the origin of life, how amphiphiles might have become organized in lipid bilayer structures, and what mechanisms may have been available for light energy transduction. The mechanisms by which ions, lipids, and proteins interact in membrane systems are described in the next part of the book. Some chapters in the third part of the book cover the analysis of several bacterial membranes as reconstituted, light transducing systems, providing a new tool for investigating basic mechanisms. Relevant aspects of mitochondrial energy transduction are also covered. Finally, the last part presents mechanism analysis by which intact bacteria and chloroplasts interact with light energy, which represent the end product of several billion of years of evolution. Biological evolutionists, biologists, researchers, teachers, and students who are interested in various aspects of light transducing membranes will greatly benefit from this book.
Energy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.
The main purpose of this book is to unify approaches and ideas in the field of aneural sensory transduction. This field has recently come to the attention of several research groups in various disciplines, and their number seems to be growing. Unfortunately, because of the diverse scientific backgrounds of the researchers in the field, the apparent heterogeneity of experimental techniques (i. e. , behavioral response analysis, sophisticated biochemical and genetic manipulations, conventional and pulsed laser spectroscopy) and theoretical approaches may be discouraging, for both the experienced worker and the new comer. Actually, this heterogeneity is more apparent than real, and unifying concepts, approaches, and ideas already exist, particularly with respect to all the questions concerning the role of membranes and their properties (such as ion permeability, electric potentials, and active transport) in the various steps of sensory perception and transduction processes. It is currently accepted that most, if not all, the fundamental facts in molecular sensory physiology of aneural organisms, be they chemosensory, photosensory, or geosensory, can ultimately be understood in terms of a few basic ideas. Each chapter of this book emphasizes and clarifies the role of mem brane properties and phenomena in the particular sensory response examined. Of course, in some cases, this task has been rather complex because of the limited amount of experimental data clearly supporting a membrane-based model of sensory transduction.
This book provides the reader with background information on neurotransmitter release. Emphasis is placed on the rationale by which proteins are assigned specific functions rather than just providing facts about function.
The objective of this project is to use primarily an electrochemical approach to study the fundamental molecular processes that underlie the light-mediated sensory and energy transduction in model retinal protein membranes. Most light-mediated energy transducing membranes utilize chlorophyll protein complexes as the 'reaction centers' whereas most light-mediated sensory transducing membranes utilize retinal proteins as the light-sensing elements. At a superficial level the only thing in common to both types of membranes is the asymmetrical orientation of the membrane-bound pigment-proteins. The retinal protein, bacteriorhodopsin, from the purple membrane of Halobacterium halobium is a light-driven proton pump. It is unique in the sense that it is similar to the visual pigment rhodopsin chemically but similar to the chlorophyll protein complexes functionally. The bacteriorhodopsin system thus presents an unusual opportunity to gain insights into possible common designs in the photosynthetic and the visual membranes.