Download Free Light In Planetary Atmospheres And Other Particulate Media Book in PDF and EPUB Free Download. You can read online Light In Planetary Atmospheres And Other Particulate Media and write the review.

The principal elements of the theory of polarized light transfer in planetary atmospheres are expounded in a systematic but concise way. Basic concepts and practical methods are emphasized, both for single and multiple scattering of electromagnetic radiation by molecules and particles in the atmospheres of planets in the Solar System, including the Earth, and beyond. A large part of the book is also useful for studies of light scattering by particles in comets, the interplanetary and interstellar medium, circumstellar disks, reflection nebulae, water bodies like oceans and suspensions of particles in a gas or liquid in the laboratory. Throughout the book symmetry principles, such as the reciprocity principle and the mirror symmetry principle, are employed. In this way the theory is made more transparent and easier to understand than in most papers on the subject. In addition, significant computational reductions, resulting from symmetry principles, are presented. Hundreds of references to relevant literature are given at the end of the book. Appendices contain supplementary information such as a general exposition on properties of matrices transforming Stokes parameters of light beams. Each chapter concludes with a number of problems with answers or hints for solution. The readers should have some basic knowledge of physics and mathematics. The book is suitable as a textbook for advanced undergraduates and graduate students. It will also be of interest to science professionals in one of the many disciplines in which electromagnetic scattering plays an important role, like astrophysics, atmospheric optics, remote sensing, marine optics, biophysics and biomedicine.
Spectroscopy and radiative transfer are rapidly growing fields within atmospheric and planetary science with implications for weather, climate, biogeochemical cycles, air quality on Earth, as well as the physics and evolution of planetary atmospheres in our solar system and beyond. Remote sensing and modeling atmospheric composition of the Earth, of other planets in our solar system, or of planets orbiting other stars require detailed knowledge of how radiation and matter interact in planetary atmospheres. This includes knowledge of how stellar or thermal radiation propagates through atmospheres, how that propagation affects radiative forcing of climate, how atmospheric pollutants and greenhouse gases produce unique spectroscopic signatures, how the properties of atmospheres may be quantitatively measured, and how those measurements relate to physical properties. This book provides this fundamental knowledge to a depth that will leave a student with the background to become capable of performing quantitative research on atmospheres. The book is intended for graduate students or for advanced undergraduates. It spans across principles through applications, with sufficient background for students without prior experience in either spectroscopy or radiative transfer. Courses based on this book are intended to be accompanied by the development of increasing sophisticated atmospheric and spectroscopic modeling capability (ideally, the student develops a computer model for simulation of atmospheric spectra from microwave through ultraviolet).
Planetary atmospheres is a relatively new, interdisciplinary subject that incorporates various areas of the physical and chemical sciences, including geophysics, geophysical fluid dynamics, atmospheric science, astronomy, and astrophysics. Providing a much-needed resource for this cross-disciplinary field, An Introduction to Planetary Atmospheres presents current knowledge on atmospheres and the fundamental mechanisms operating on them. The author treats the topics in a comparative manner among the different solar system bodies—what is known as comparative planetology. Based on an established course, this comprehensive text covers a panorama of solar system bodies and their relevant general properties. It explores the origin and evolution of atmospheres, along with their chemical composition and thermal structure. It also describes cloud formation and properties, mechanisms in thin and upper atmospheres, and meteorology and dynamics. Each chapter focuses on these atmospheric topics in the way classically done for the Earth’s atmosphere and summarizes the most important aspects in the field. The study of planetary atmospheres is fundamental to understanding the origin of the solar system, the formation mechanisms of planets and satellites, and the day-to-day behavior and evolution of Earth’s atmosphere. With many interesting real-world examples, this book offers a unified vision of the chemical and physical processes occurring in planetary atmospheres. Ancillaries are available at www.ajax.ehu.es/planetary_atmospheres/
This is the eleventh volume in the series Light Scattering Reviews, devoted to current knowledge of light scattering problems and both experimental and theoretical research techniques related to their solution. The focus of this volume is to describe modern advances in radiative transfer and light scattering optics. This book brings together the most recent studies on light radiative transfer in the terrestrial atmosphere, while also reviewing environmental polarimetry. The book is divided into nine chapters: • the first four chapters review recent advances in modern radiative transfer theory and provide detailed descriptions of radiative transfer codes (e.g., DISORT and CRTM). Approximate solutions of integro-differential radiative transfer equations for turbid media with different shapes (spheres, cylinders, planeparallel layers) are detailed; • chapters 5 to 8 focus on studies of light scattering by single particles and radially inhomogeneous media; • the final chapter discusses the environmental polarimetry of man-made objects.
A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.