Download Free Light Field Sampling Book in PDF and EPUB Free Download. You can read online Light Field Sampling and write the review.

Light field is one of the most representative image-based rendering techniques that generate novel virtual views from images instead of 3D models. The light field capture and rendering process can be considered as a procedure of sampling the light rays in the space and interpolating those in novel views. As a result, light field can be studied as a high-dimensional signal sampling problem, which has attracted a lot of research interest and become a convergence point between computer graphics and signal processing, and even computer vision. This lecture focuses on answering two questions regarding light field sampling, namely how many images are needed for a light field, and if such number is limited, where we should capture them. The book can be divided into three parts. First, we give a complete analysis on uniform sampling of IBR data. By introducing the surface plenoptic function, we are able to analyze the Fourier spectrum of non-Lambertian and occluded scenes. Given the spectrum, we also apply the generalized sampling theorem on the IBR data, which results in better rendering quality than rectangular sampling for complex scenes. Such uniform sampling analysis provides general guidelines on how the images in IBR should be taken. For instance, it shows that non-Lambertian and occluded scenes often require a higher sampling rate. Next, we describe a very general sampling framework named freeform sampling. Freeform sampling handles three kinds of problems: sample reduction, minimum sampling rate to meet an error requirement, and minimization of reconstruction error given a fixed number of samples. When the to-be-reconstructed function values are unknown, freeform sampling becomes active sampling. Algorithms of active sampling are developed for light field and show better results than the traditional uniform sampling approach. Third, we present a self-reconfigurable camera array that we developed, which features a very efficient algorithm for real-time rendering and the ability of automatically reconfiguring the cameras to improve the rendering quality. Both are based on active sampling. Our camera array is able to render dynamic scenes interactively at high quality. To the best of our knowledge, it is the first camera array that can reconfigure the camera positions automatically.
Light field is one of the most representative image-based rendering techniques that generate novel virtual views from images instead of 3D models. The light field capture and rendering process can be considered as a procedure of sampling the light rays in the space and interpolating those in novel views. As a result, light field can be studied as a high-dimensional signal sampling problem, which has attracted a lot of research interest and become a convergence point between computer graphics and signal processing, and even computer vision. This lecture focuses on answering two questions regarding light field sampling, namely how many images are needed for a light field, and if such number is limited, where we should capture them. The book can be divided into three parts. First, we give a complete analysis on uniform sampling of IBR data. By introducing the surface plenoptic function, we are able to analyze the Fourier spectrum of non-Lambertian and occluded scenes. Given the spectrum, we also apply the generalized sampling theorem on the IBR data, which results in better rendering quality than rectangular sampling for complex scenes. Such uniform sampling analysis provides general guidelines on how the images in IBR should be taken. For instance, it shows that non-Lambertian and occluded scenes often require a higher sampling rate. Next, we describe a very general sampling framework named freeform sampling. Freeform sampling handles three kinds of problems: sample reduction, minimum sampling rate to meet an error requirement, and minimization of reconstruction error given a fixed number of samples. When the to-be-reconstructed function values are unknown, freeform sampling becomes active sampling. Algorithms of active sampling are developed for light field and show better results than the traditional uniform sampling approach. Third, we present a self-reconfigurable camera array that we developed, which features a very efficient algorithm for real-time rendering and the ability of automatically reconfiguring the cameras to improve the rendering quality. Both are based on active sampling. Our camera array is able to render dynamic scenes interactively at high quality. To the best of our knowledge, it is the first camera array that can reconfigure the camera positions automatically.
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.
This updated edition describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. Through the ideas and software in this book, designers will learn to design and employ a full-featured rendering system for creating stunning imagery. Includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux.
This fourth volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in Image, Video Processing and Analysis, Hardware, Audio, Acoustic and Speech Processing - Presents core principles and shows their application - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Medical imaging provides medical professionals the unique ability to investigate and diagnose injuries and illnesses without being intrusive. With the surge of technological advancement in recent years, the practice of medical imaging has only been improved through these technologies and procedures. It is essential to examine these innovations in medical imaging to implement and improve the practice around the world. The Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention investigates and presents the recent innovations, procedures, and technologies implemented in medical imaging. Covering topics such as automatic detection, simulation in medical education, and neural networks, this major reference work is an excellent resource for radiologists, medical professionals, hospital administrators, medical educators and students, librarians, researchers, and academicians.
The two-volume set LNCS 13141 and LNCS 13142 constitutes the proceedings of the 28th International Conference on MultiMedia Modeling, MMM 2022, which took place in Phu Quoc, Vietnam, during June 6–10, 2022. The 107 papers presented in these proceedings were carefully reviewed and selected from a total of 212 submissions. They focus on topics related to multimedia content analysis; multimedia signal processing and communications; and multimedia applications and services.
With the growing use of new technologies and artificial intelligence (AI) applications, intelligent systems can be used to manage large amounts of existing data in healthcare domains. Having more intelligent methods for accessing data allows medical professionals to more efficiently identify the best medical practices and more concrete solutions for diagnosing and treating a multitude of rare diseases. Intelligent Systems for Healthcare Management and Delivery provides relevant and advanced methodological, technological, and scientific approaches related to the application of sophisticated exploitation of AI, as well as providing insight into the technologies and intelligent applications that have received growing attention in recent years such as medical imaging, EMR systems, and drug development assistance. This publication fosters a scientific debate for new healthcare intelligent systems and sophisticated approaches for enhanced healthcare services and is ideally designed for medical professionals, hospital staff, rehabilitation specialists, medical educators, and researchers.
Focusing exclusively on Image-Based Rendering (IBR) this book examines the theory, practice, and applications associated with image-based rendering and modeling. Topics covered vary from IBR basic concepts and representations on the theory side to signal processing and data compression on the practical side. One of the only titles devoted exclusively to IBR this book is intended for researchers, professionals, and general readers interested in the topics of computer graphics, computer vision, image process, and video processing. With this book advanced-level students in EECS studying related disciplines will be able to seriously expand their knowledge about image-based rendering.
Driven by consumer-market applications that enjoy steadily increasing economic importance, graphics hardware and rendering algorithms are a central focus of computer graphics research. Video-based rendering is an approach that aims to overcome the current bottleneck in the time-consuming modeling process and has applications in areas such as comput