Download Free Ligand Binding Assays Book in PDF and EPUB Free Download. You can read online Ligand Binding Assays and write the review.

A consolidated and comprehensive reference on ligand-binding assays Ligand-binding assays (LBAs) stand as the cornerstone of support for definition of the pharmaco-kinetics and toxicokinetics of macromolecules, an area of burgeoning interest in the pharmaceutical industry. Yet, outside of the Crystal City Conference proceedings, little guidance has been available for LBA validation, particularly for assays used to support macromolecule drug development. Ligand-Binding Assays: Development, Validation, and Implementation in the Drug Development Arena answers that growing need, serving as a reference text discussing critical aspects of the development, validation, and implementation of ligand-binding assays in the drug development field. Ligand-Binding Assays covers essential topics related to ligand-binding assays, from pharmacokinetic studies, the development of LBAs, assay validation, statistical LBA aspects, and regulatory aspects, to software for LBAs and robotics and other emerging methodologies for LBAs. Highlights include: A general discussion of challenges and proven approaches in the development of ligand-binding assays More detailed examination of characteristics of these assays when applied to support of pharmacokinetic and toxicokinetic studies of compounds at different stages in the discovery or development timeline A concise, but detailed, discussion of validation of ligand-binding assays for macromolecules A practical approach to "fit-for-purpose" validation of assays for biomarkers, those molecules receiving increased attention as potentially demonstrating that the target chosen in discovery is being modulated by the candidate therapeutic, both in nonclinical and clinical studies Written by a team of world-recognized authorities in the field, Ligand-Binding Assays provides key information to a broad range of practitioners, both in the pharmaceutical and allied industries and in related contract research organizations and academic laboratories and, perhaps, even in the field of diagnostics and clinical chemistry.
A comprehensive collection of readily reproducible methods for studying receptors in silico, in vitro, and in vivo. These cutting-edge techniques cover mining from curated databases, identifying novel receptors by high throughput screening, molecular methods to identify mRNA encoding receptors, radioligand binding assays and their analysis, quantitative autoradiography, and imaging receptors by positron emission tomography (PET). Highlights include phenotypic characterization of receptors in knockout mice, imaging receptors using green fluorescent protein and fluorescent resonance energy transfer, and quantitative analysis of receptor mRNA by TaqMan PCR. These book equips the researcher with techniques for exploring the unprecedented number of new receptor systems now emerging and the so-called "orphan" receptors whose activating ligand has not been identified.
Radiophannaceutical research has recently undergone a major change in direction. In past years it has been concerned mainly with the development of perfusion tracers, the biodistribution of which reflect the regional blood flow to areas of major organs such as the heart and brain. However, a major new direction of interest now lies in the development of receptor-binding radio-tracers which can be used to perform in-vivo characterisation of diseased tissues and it is likely that much of the future research in this field will follow this direction. The difficulties in developing such tracers are considerable. The researcher must first identify a promising target for radiopharmaceutical development. High specific activity radioactive molecules must be designed and synthesised which will both bind to the target receptor with high affinity, and also have the physicochemical characteristics which will allow them to reach the target site in sufficient quantity while at the same time showing minimal uptake in non-target tissues. Thus the knowledge base required for radiophannaceutical development has now expanded beyond the limits of radiopharmaceutical chemistry to include aspects of biochemistry, molecular biology and conventional drug design. The portfolio of basic knowledge required to support current radiopharmaceutical development is changing and scientists working in this arena need to be trained in this regard. At the same time, the very latest developments in the field need to be communicated to the scientific community in order to stimulate the advancement of this exciting new direction of research.
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field.
The editors have engaged leading scientists in the field to participate in the development of this book, which is envisioned as a “one of a kind” contribution to the field. The book is a comprehensive text that puts fundamental bioanalytical science in context with current practice, its challenges and ongoing developments. It expands on existing texts on the subject by covering regulated bioanalysis of both small and large molecule therapeutics from both a scientific and regulatory viewpoint. The content will be useful to a wide spectrum of readers: from those new to bioanalysis; to those developing their experience in the laboratory, or working in one of the many critical supporting roles; to seasoned practitioners looking for a solid source of information on this exciting and important discipline.
The binding of small ligands to biological molecules is central to most aspects of biological function. The past twenty years has seen the development of an increasing armoury of biophysical methods that not only detect such binding, but also provide varying degrees of information about the kinetics, thermodynamics and structural aspects of the process. These methods have received increasing attention with the growth in more rational approaches to drug discovery and design. This book reviews the latest advances in the application of biophysics to the study of ligand binding. It provides a complete overview of current techniques to identify ligands, characterise their binding sites and understand their binding mechanisms. Particular emphasis is given to the combined use of different techniques and their relative strengths and weaknesses. Consistency in the way each technique is described makes it easy for readers to select the most suitable protocol for their research. The introduction explains why some techniques are more suitable than others and emphasizes the possible synergies between them. The following chapters, all written by a specialist in the particular technique, focus on each method individually. The book finishes by describing how several complimentary techniques can be used together for maximum effectiveness. This book is suitable for biomolecular scientists at graduate or post-doctoral level in academia and industry. Biologists and chemists will also find it a useful introduction to the techniques available.
The fourth edition of The Immunoassay Handbook provides an excellent, thoroughly updated guide to the science, technology and applications of ELISA and other immunoassays, including a wealth of practical advice. It encompasses a wide range of methods and gives an insight into the latest developments and applications in clinical and veterinary practice and in pharmaceutical and life science research. Highly illustrated and clearly written, this award-winning reference work provides an excellent guide to this fast-growing field. Revised and extensively updated, with over 30% new material and 77 chapters, it reveals the underlying common principles and simplifies an abundance of innovation. The Immunoassay Handbook reviews a wide range of topics, now including lateral flow, microsphere multiplex assays, immunohistochemistry, practical ELISA development, assay interferences, pharmaceutical applications, qualitative immunoassays, antibody detection and lab-on-a-chip. This handbook is a must-read for all who use immunoassay as a tool, including clinicians, clinical and veterinary chemists, biochemists, food technologists, environmental scientists, and students and researchers in medicine, immunology and proteomics. It is an essential reference for the immunoassay industry. Provides an excellent revised guide to this commercially highly successful technology in diagnostics and research, from consumer home pregnancy kits to AIDS testing.www.immunoassayhandbook.com is a great resource that we put a lot of effort into. The content is designed to encourage purchases of single chapters or the entire book. David Wild is a healthcare industry veteran, with experience in biotechnology, pharmaceuticals, medical devices and immunodiagnostics, which remains his passion. He worked for Amersham, Eastman-Kodak, Johnson & Johnson, and Bristol-Myers Squibb, and consulted for diagnostics and biotechnology companies. He led research and development programs, design and construction of chemical and biotechnology plants, and integration of acquired companies. Director-level positions included Research and Development, Design Engineering, Operations and Strategy, for billion dollar businesses. He retired from full-time work in 2012 to focus on his role as Editor of The Immunoassay Handbook, and advises on product development, manufacturing and marketing. - Provides a unique mix of theory, practical advice and applications, with numerous examples - Offers explanations of technologies under development and practical insider tips that are sometimes omitted from scientific papers - Includes a comprehensive troubleshooting guide, useful for solving problems and improving assay performancee - Provides valuable chapter updates, now available on www.immunoassayhandbook.com
This is not a book on NO biology, nor about hemoglobin, nor about heme-based sensors per se. Of course, it covers all these topics and more, but above all, it aims at providing a truly multidisciplinary perspective of heme-diatomic interactions. The overarching goal is to build bridges among disciplines, to bring about a meeting of minds. The contributors to this book hail from diverse university departments and disciplines – chemistry, biochemistry, molecular biology, microbiology, zoology, physics, medicine and surgery, bringing with them very different views of heme-diatomic interactions. The hope is that the juxtaposition of this diversity will lead to increased exchanges of ideas, approaches, and techniques across traditional disciplinary boundaries. The authors represent a veritable Who's Who of heme protein research and include John Olson, Tom Spiro, Walter Zumft, F. Ann Walker, Teizo Kitagawa, W. Robert Scheidt, Pat Farmer, Marie-Alda Gilles-Gonzalez, and many other equally distinguished scientists. - Extremely distinguished list of authors - Multidisciplinary character – equally suitable for chemists and biochemists - Covers the hottest topics in heme protein research: sensors, NO biology, new roles of hemoglobin, etc.
This practical reference for medicinal and pharmaceutical chemists combines the theoretical background with modern methods as well as applications from recent lead finding and optimization projects. Divided into two parts on the thermodynamics and kinetics of drug-receptor interaction, the text provides the conceptual and methodological basis for characterizing binding mechanisms for drugs and other bioactive molecules. It covers all currently used methods, from experimental approaches, such as ITC or SPR, right up to the latest computational methods. Case studies of real-life lead or drug development projects are also included so readers can apply the methods learned to their own projects. Finally, the benefits of a thorough binding mode analysis for any drug development project are summarized in an outlook chapter written by the editors.
The first book to offer a blueprint for overcoming the challenges to successfully quantifying biomarkers in living organisms The demand among scientists and clinicians for targeted quantitation experiments has experienced explosive growth in recent years. While there are a few books dedicated to bioanalysis and biomarkers in general, until now there were none devoted exclusively to addressing critical issues surrounding this area of intense research. Target Biomarker Quantitation by LC-MS provides a detailed blueprint for quantifying biomarkers in biological systems. It uses numerous real-world cases to exemplify key concepts, all of which were carefully selected and presented so as to allow the concepts they embody to be easily expanded to future applications, including new biomarker development. Target Biomarker Quantitation by LC-MS primarily focuses on the assay establishment for biomarker quantitation—a critical issue rarely treated in depth. It offers comprehensive coverage of three core areas of biomarker assay establishment: the relationship between the measured biomarkers and their intended usage; contemporary regulatory requirements for biomarker assays (a thorough understanding of which is essential to producing a successful and defendable submission); and the technical challenges of analyzing biomarkers produced inside a living organism or cell. Covers the theory of and applications for state-of-the-art mass spectrometry and chromatography and their applications in biomarker analysis Features real-life examples illustrating the challenges involved in target biomarker quantitation and the innovative approaches which have been used to overcome those challenges Addresses potential obstacles to obtain effective biomarker level and data interpretation, such as specificity establishment and sample collection Outlines a tiered approach and fit-for-purpose assay protocol for target biomarker quantitation Highlights the current state of the biomarker regulatory environment and protocol standards Target Biomarker Quantitation by LC-MS is a valuable resource for bioanalytical scientists, drug metabolism and pharmacokinetics scientists, clinical scientists, analytical chemists, and others for whom biomarker quantitation is an important tool of the trade. It also functions as an excellent text for graduate courses in pharmaceutical, biochemistry and chemistry.