Download Free Life At Vents And Seeps Book in PDF and EPUB Free Download. You can read online Life At Vents And Seeps and write the review.

Teeming with weird and wonderful life--giant clams and mussels, tubeworms, "eyeless" shrimp, and bacteria that survive on sulfur--deep-sea hot-water springs are found along rifts where sea-floor spreading occurs. The theory of plate tectonics predicted the existence of these hydrothermal vents, but they were discovered only in 1977. Since then the sites have attracted teams of scientists seeking to understand how life can thrive in what would seem to be intolerable or extreme conditions of temperature and fluid chemistry. Some suspect that these vents even hold the key to understanding the very origins of life. Here a leading expert provides the first authoritative and comprehensive account of this research in a book intended for students, professionals, and general readers. Cindy Lee Van Dover, an ecologist, brings nearly two decades of experience and a lively writing style to the text, which is further enhanced by two hundred illustrations, including photographs of vent communities taken in situ. The book begins by explaining what is known about hydrothermal systems in terms of their deep-sea environment and their geological and chemical makeup. The coverage of microbial ecology includes a chapter on symbiosis. Symbiotic relationships are further developed in a section on physiological ecology, which includes discussions of adaptations to sulfide, thermal tolerances, and sensory adaptations. Separate chapters are devoted to trophic relationships and reproductive ecology. A chapter on community dynamics reveals what has been learned about the ways in which vent communities become established and why they persist, while a chapter on evolution and biogeography examines patterns of species diversity and evolutionary relationships within chemosynthetic ecosystems. Cognate communities such as seeps and whale skeletons come under scrutiny for their ability to support microbial and invertebrate communities that are ecologically and evolutionarily related to hydrothermal faunas. The book concludes by exploring the possibility that life originated at hydrothermal vents, a hypothesis that has had tremendous impact on our ideas about the potential for life on other planets or planetary bodies in our solar system.
The World Ocean Assessment - or, to give its full title, The First Global Integrated Marine Assessment - is the outcome of the first cycle of the United Nations' Regular Process for Global Reporting and Assessment of the State of the Marine Environment, including Socioeconomic Aspects. The Assessment provides vital, scientifically-grounded bases for the consideration of ocean issues, including climate change, by governments, intergovernmental agencies, non-governmental agencies and all other stakeholders and policymakers involved in ocean affairs. Together with future assessments and related initiatives, it will support the implementation of the recently adopted 2030 Agenda for Sustainable Development, particularly its ocean-related goals. Moreover, it will also form an important reference text for marine science courses.
This book provides an intriguing look at how life can adapt to many different extreme environments. It addresses the limits for life development and examines different strategies used by organisms to adapt to different extreme environments.
Globally growing demand of energy and mineral resources, reliable future projection of climate processes and the protection of coasts to mitigate the threats of disasters and hazards require a comprehensive understanding of the structure, ongoing processes and genesis of the marine geosphere. Beyond the “classical” research fields in marine geology in current time more general concepts have been evolved integrating marine geophysics, hydrography, marine biology, climatology and ecology. As an umbrella the term “marine geosciences” has been broadly accepted for this new complex field of research and the solutions of practical tasks in the marine realm. The “Encyclopedia of Marine Geosciences” comprises the current knowledge in marine geosciences whereby not only basic but also applied and technical sciences are covered. Through this concept a broad scale of users in the field of marine sciences and techniques is addressed from students and scholars in academia to engineers and decision makers in industry and politics.
This volume examines the deep sea ecosystem from a variety of perspectives. The initial chapters examine the deep-sea floor, the deep pelagic environment and the more specialised chemosynthetic environments of hydrothermal vents and cold seeps. These environments are examined from the perspective of the relationship of deep-sea animals to their physico-chemical environment.Later chapters examine the biogeography of the main deep oceans (Atlantic, Pacific and Indian) with particular attention to the downward flux of surface-derived organic matter and how this drives the processes within the deep-sea ecosystem. The peripheral deep seas including the polar seas and the marginal deep seas (inter alia the Mediterranean, Red, Caribbean and Okhotsk seas) are explored in the same context. The final chapters examine the processes occurring in the deep sea and include an analysis of why the deep sea has high species diversity, how the fauna respond to organic input and how species have adapted reproductive activity in the deep sea. The volume concludes with an analysis of the anthropogenic impact on the deep sea.
This timely volume provides a comprehensive account of the natural history of the organisms associated with the deep-sea floor and examines their relationship with this inhospitable environment--perhaps the most remote and least accessible location on the planet. The authors begin by describing the physical and chemical nature of the deep-sea floor and the methods used to collect and study its fauna. Then they discuss the ecology of the deep sea by exploring spatial patterns, diversity, biomass, vertical zonation, and large-scale distribution of organisms. Subsequent chapters review current knowledge of feeding, respiration, reproduction, and growth processes in these communities. The unique fauna of hypothermal vents and seeps are considered separately. Finally, there is a pertinent discussion of human exploitation of deep-sea resources and potential use of this environment for waste disposal.
Marine Animal Forests (MAFs) are spread all over the world. Composed by suspension feeding organisms (e.g. corals, gorgonians, sponges, bryozoans, bivalves, etc.), MAFs constitute a vast number of marine ecosystems such as coral reefs, cold water corals, sponge grounds, bivalve beds, etc. The surface covered by these systems is prominent (at the scale of the oceans of the planet), though poorly known. In a previous book (Marine Animal Forests, the ecology of benthic biodiversity hotspots), several aspects of the MAFs were described and discussed, building the basis for a holistic approach with the aim of putting these shallow and deep sea ecosystems under a common umbrella. The main target of the present book is to identify and address important topics which were not covered in the previous three volumes. Bryozoans or Polychaeta, for example, are treated in this volume, as well as hydrothermal vents ecosystems and submarine caves, the chemical ecology in MAFs or the nursery effect on these ecosystems. The vastity of the MAF concept opens new insights in the biology, physiology, biodiversity of the organisms structuring these highly biodiverse ecosystems and on the dangers threatening them (such as microplastics or the role of invasive species as an impact of their trophic ecology or distribution). In a fast changing world, in which the complexity of MAFs is at risk, we propose an in-depth analysis of many aspects that may be inspirational for future research lines in marine biology and ecology.
This book on the current state of knowledge of submarine geomorphology aims to achieve the goals of the Submarine Geomorphology working group, set up in 2013, by establishing submarine geomorphology as a field of research, disseminating its concepts and techniques among earth scientists and professionals, and encouraging students to develop their skills and knowledge in this field. Editors have invited 30 experts from around the world to contribute chapters to this book, which is divided into 4 sections – (i) Introduction & history, (ii) Data & methods, (ii) Submarine landforms & processes and (iv) Conclusions & future directions. Each chapter provides a review of a topic, establishes the state-of-the-art, identifies the key research questions that need to be addressed, and delineates a strategy on how to achieve this. Submarine geomorphology is a priority for many research institutions, government authorities and industries globally. The book is useful for undergraduate and graduate students, and professionals with limited training in this field.
During the past ten years, evidence has developed to indicate that seawater convects through oceanic crust driven by heat derived from creation of lithosphere at the Earth-encircling oceanic ridge-rift system of seafloor spreading centers. This has stimulated multiple lines of research with profound implications for the earth and life sciences. The lines of research comprise the role of hydrothermal convection at seafloor spreading centers in the Earth's thermal regime by cooling of newly formed litho sphere (oceanic crust and upper mantle); in global geochemical cycles and mass balances of certain elements by chemical exchange between circulating seawater and basaltic rocks of oceanic crust; in the concentration of metallic mineral deposits by ore-forming processes; and in adaptation of biological communities based on a previously unrecognized form of chemosynthesis. The first work shop devoted to interdisciplinary consideration of this field was organized by a committee consisting of the co-editors of this volume under the auspices of a NATO Advanced Research Institute (ARI) held 5-8 April 1982 at the Department of Earth Sciences of Cambridge University in England. This volume is a product of that workshop. The papers were written by members of a pioneering research community of marine geologists, geophysicists, geochemists and biologists whose work is at the stage of initial description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers.