Download Free Lie Algebras Applications And Computational Methods Papers Presented At The Conference On Lie Algebras Applications And Computational Methods At Drexel Univ June 15 16 1972 Sponsored By Drexel Univ And Siam Book in PDF and EPUB Free Download. You can read online Lie Algebras Applications And Computational Methods Papers Presented At The Conference On Lie Algebras Applications And Computational Methods At Drexel Univ June 15 16 1972 Sponsored By Drexel Univ And Siam and write the review.

Introduces the concepts and methods of the Lie theory in a form accessible to the non-specialist by keeping mathematical prerequisites to a minimum. Although the authors have concentrated on presenting results while omitting most of the proofs, they have compensated for these omissions by including many references to the original literature. Their treatment is directed toward the reader seeking a broad view of the subject rather than elaborate information about technical details. Illustrations of various points of the Lie theory itself are found throughout the book in material on applications. In this reprint edition, the authors have resisted the temptation of including additional topics. Except for correcting a few minor misprints, the character of the book, especially its focus on classical representation theory and its computational aspects, has not been changed.
Eugene Wigner is one of the few giants of 20th-century physics. The present annotated volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics.
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators, and the dimensions of the representations of all classical Lie algebras. For this new edition, the text has been carefully revised and expanded; in particular, a new chapter has been added on the deformation and contraction of Lie algebras. From the reviews of the first edition: "Iachello has written a pedagogical and straightforward presentation of Lie algebras [...]. It is a great text to accompany a course on Lie algebras and their physical applications." (Marc de Montigny, Mathematical Reviews, Issue, 2007 i) "This book [...] written by one of the leading experts in the field [...] will certainly be of great use for students or specialists that want to refresh their knowledge on Lie algebras applied to physics. [...] An excellent reference for those interested in acquiring practical experience [...] and leaving the embarrassing theoretical presentations aside." (Rutwig Campoamor-Stursberg, Zentralblatt MATH, Vol. 1156, 2009)
This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational techniques that are so important in handling Lie groups. The book is based on a one-semester course given at the State University of New York, Stony Brook in fall, 1986 to an audience having little or no background in Lie groups but interested in seeing connections among algebra, geometry, and Lie theory. These notes develop what is needed beyond a first graduate course in algebra in order to appreciate cohomological induction and to see its first consequences. Along the way one is able to study homological algebra with a significant application in mind; consequently one sees just what results in that subject are fundamental and what results are minor.