Download Free Levy Processes In Credit Risk Book in PDF and EPUB Free Download. You can read online Levy Processes In Credit Risk and write the review.

This book is an introductory guide to using Lévy processes for credit risk modelling. It covers all types of credit derivatives: from the single name vanillas such as Credit Default Swaps (CDSs) right through to structured credit risk products such as Collateralized Debt Obligations (CDOs), Constant Proportion Portfolio Insurances (CPPIs) and Constant Proportion Debt Obligations (CPDOs) as well as new advanced rating models for Asset Backed Securities (ABSs). Jumps and extreme events are crucial stylized features, essential in the modelling of the very volatile credit markets - the recent turmoil in the credit markets has once again illustrated the need for more refined models. Readers will learn how the classical models (driven by Brownian motions and Black-Scholes settings) can be significantly improved by using the more flexible class of Lévy processes. By doing this, extreme event and jumps can be introduced into the models to give more reliable pricing and a better assessment of the risks. The book brings in high-tech financial engineering models for the detailed modelling of credit risk instruments, setting up the theoretical framework behind the application of Lévy Processes to Credit Risk Modelling before moving on to the practical implementation. Complex credit derivatives structures such as CDOs, ABSs, CPPIs, CPDOs are analysed and illustrated with market data.
We develop a switching regime version of the intensity model for credit risk pricing. The default event is specified by a Poisson process whose intensity is modeled by a switching Lévy process. This model presents several interesting features. Firstly, as Lévy processes encompass numerous jump processes, our model can duplicate sudden jumps observed in credit spreads. Also, due to the presence of jumps, probabilities do not vanish at very short maturities, contrary to models based on Brownian dynamics. Furthermore, as parameters of the Lévy process are modulated by a hidden Markov chain, our approach is well suited to model changes of volatility trends in credit spreads, related to modifications of unobservable economic factors.
Financial mathematics has recently enjoyed considerable interest on account of its impact on the finance industry. In parallel, the theory of L?vy processes has also seen many exciting developments. These powerful modelling tools allow the user to model more complex phenomena, and are commonly applied to problems in finance. L?vy Processes in Finance: Pricing Financial Derivatives takes a practical approach to describing the theory of L?vy-based models, and features many examples of how they may be used to solve problems in finance. * Provides an introduction to the use of L?vy processes in finance. * Features many examples using real market data, with emphasis on the pricing of financial derivatives. * Covers a number of key topics, including option pricing, Monte Carlo simulations, stochastic volatility, exotic options and interest rate modelling. * Includes many figures to illustrate the theory and examples discussed. * Avoids unnecessary mathematical formalities. The book is primarily aimed at researchers and postgraduate students of mathematical finance, economics and finance. The range of examples ensures the book will make a valuable reference source for practitioners from the finance industry including risk managers and financial product developers.
Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion. The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
It was the end of 2005 when our employer, a major European Investment Bank, gave our team the mandate to compute in an accurate way the counterparty credit exposure arising from exotic derivatives traded by the ?rm. As often happens, - posure of products such as, for example, exotic interest-rate, or credit derivatives were modelled under conservative assumptions and credit of?cers were struggling to assess the real risk. We started with a few models written on spreadsheets, t- lored to very speci?c instruments, and soon it became clear that a more systematic approach was needed. So we wrote some tools that could be used for some classes of relatively simple products. A couple of years later we are now in the process of building a system that will be used to trade and hedge counterparty credit ex- sure in an accurate way, for all types of derivative products in all asset classes. We had to overcome problems ranging from modelling in a consistent manner different products booked in different systems and building the appropriate architecture that would allow the computation and pricing of credit exposure for all types of pr- ucts, to ?nding the appropriate management structure across Business, Risk, and IT divisions of the ?rm. In this book we describe some of our experience in modelling counterparty credit exposure, computing credit valuation adjustments, determining appropriate hedges, and building a reliable system.