Download Free Level Ice Interaction With Sloping And Conical Offshore Structures Book in PDF and EPUB Free Download. You can read online Level Ice Interaction With Sloping And Conical Offshore Structures and write the review.

This encyclopedia adopts a wider definition for the concept of ocean engineering. Specifically, it includes (1) offshore engineering: fixed and floating offshore oil and gas platforms; pipelines and risers; cables and moorings; buoy technology; foundation engineering; ocean mining; marine and offshore renewable energy; aquaculture engineering; and subsea engineering; (2) naval architecture: ship and special marine vehicle design; intact and damaged stability; technology for energy efficiency and green shipping; ship production technology; decommissioning and recycling; (3) polar and Arctic Engineering: ice mechanics; ice-structure interaction; polar operations; polar design; environmental protection; (4) underwater technologies: AUV/ROV design; AUV/ROV hydrodynamics; maneuvering and control; and underwater-specific communicating and sensing systems for AUV/ROVs. It summarizes the A–Z of the background and application knowledge of ocean engineering for use by ocean scientists and ocean engineers as well as nonspecialists such as engineers and scientists from all disciplines, economists, students, and politicians. Ocean engineering theories, ocean devices and equipment, ocean design and operation technologies are described by international experts, many from industry and each entry offers an introduction and references for further study, making current technology and operating practices available for future generations to learn from. The book also furthers our understanding of the current state of the art, leading to new and more efficient technologies with breakthroughs from new theory and materials. As the land resources approach the exploitation limit, ocean resources are becoming the next choice for the sustainable development. As such, ocean engineering is vital in the 21st century.
This book presents the results of the IUTAM Symposium on Physics and Mechanics of Sea Ice which brought together researchers who have made significant contributions in the study of sea ice. The topics include: Fracture of ice, Thermodynamics of sea ice ridges, Global and local ice loads on ships and marine structures, Computational ice engineering and ice mechanics; and Physical and engineering problems related to ice and waves.
There is an increasing need to construct engineering structures in the Arctic seas. The requirement is principally generated by the oil and gas industry, because of the substantial reserves that are known to exist offshore in the Beaufort Sea, the Caspian Sea, the Barents Sea, the Pacific Ocean off the coast of Sakhalin, the Canadian Arctic, and almost certainly elsewhere. Structures have to withstand the severe environmental forces generated by sea ice, a subject that is developing rapidly but is still far from completely understood. Underwater pipelines have to be safe against ice gouging and strudel scour, but also have to be constructed safely and economically. The social and human environment has to be understood and respected.This important book intentionally takes a broad view, and vividly accounts for the many and often subtle interactions between the different factors. It is illustrated by case studies of actual projects.
This three-volume work presents the proceedings from the 19th International Ship and Offshore Structures Congress held in Cascais, Portugal on 7th to 10th September 2015. The International Ship and Offshore Structures Congress (ISSC) is a forum for the exchange of information by experts undertaking and applying marine structural research.The aim of
This Volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling Laws in Ice Mechanics and Ice Dynamics', held in Fairbanks, Alaska from 13th to 16th of June 2000. Ice mechanics deals with essentially intact ice: in this discipline, descriptions of the motion and deformation of Arctic/ Antarctic and river/lake ice call for the development of physically based constitutive and fracture models over an enormous range in scale: 0.01 m - 10 km. Ice dynamics, on the other hand, deals with the movement of broken ice: descriptions of an aggregate of ice floes call for accurate modeling of momentum transfer through the sea/ice system, again over an enormous range in scale: 1 km (floe scale) - 500 km (basin scale). For ice mechanics, the emphasis on lab-scale (0.01 - 0.5 m) research con trasts with applications at the scale of order 1 km (ice-structure interaction, icebreaking); many important upscaling questions remain to be explored.
This indispensable handbook provides state-of-the-art information and common sense guidelines, covering the design, construction, modernization of port and harbor related marine structures. The design procedures and guidelines address the complex problems and illustrate factors that should be considered and included in appropriate design scenarios.