Download Free Leukocyte Recruitment Endothelial Cell Adhesion Molecules And Transcriptional Control Book in PDF and EPUB Free Download. You can read online Leukocyte Recruitment Endothelial Cell Adhesion Molecules And Transcriptional Control and write the review.

The localized attachment of circulating leukocytes to endothelium has been recognized as the cellular hallmark of the inflammatory response. This adhesive interaction, a necessary antecedent to the emigration of leukocytes from the blood into the tissues, is mediated by vascular adhesion molecules. Leukocyte Recruitment, Endothelial Cell Adhesion Molecules and Transcriptional Control: Insights for Drug Discovery outlines some of the cellular and molecular mechanisms of inflammation with contributions from top researchers. This volume provides an overview of three of these endothelial adhesion molecules, as examples of key mediators of leukocyte recruitment. It reviews the structure and regulation of these cell surface proteins and focus on the rapidly expanding field of transcriptional regulation of these inducible proteins, and closes with a discussion of drug discovery possibilities that target the regulation of leukocyte recruitment. This book will be of interest for any researchers, in academia or industry, looking for an overview of leukocyte recruitment or novel approaches to drug discovery.
The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References
The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References
Arrest chemokines are a small group of chemokines that promote leukocyte arrest from rolling by triggering rapid integrin activation. Arrest chemokines have been described for neutrophils, monocytes, eosinophils, naïve lymphocytes and effector memory T cells. Most arrest chemokines are immobilized on the endothelial surface by binding to heparin sulfate proteoglycans. Whether soluble chemokines can promote integrin activation and arrest is controversial (Alon-Gerszten). Many aspects of the signaling pathway from the GPCR chemokine receptor to integrin activation are the subject of active investigation. Leukocyte adhesion deficiency III is a human disease in which chemokine-triggered integrin activation is defective because of a mutation in the cytoskeletal protein kindlin-3. About 10 different such mutations have been described. The defects seen in patients with LAD-III elucidate the importance of rapid integrin activation for host defense in humans. We welcome reports that help clarifying this crucial first step in the process of leukocyte transendothelial migration.
This volume gives a comprehensive overview on the most relevant leukocyte and endothelial adhesion molecules. The chapters are written by leaders in the field and focus on the biology, structure, function, and regulation of adhesion molecules. Currently approved adhesion molecule-based therapies are reviewed and an outlook for future approaches is also provided. The book is of interest to clinicians and scientists from immunology, physiology, cancer research, rheumatology, allergology, infectious diseases, gastroenterology, pulmonology and cardiology.
The aim of the Handbooks in Practical Animal Cell Biology is to provide practical workbooks for those involved in primary cell culture. Each volume addresses a different cell lineage, and contains an introductory section followed by individual chapters on the culture of specific differentiated cell types. The authors of each chapter are leading researchers in their fields and use their first-hand experience to present reliable techniques in a clear and thorough manner. Endothelial Cell Culture contains chapters on endothelial cells derived from 1) lung, 2) bone marrow, 3) brain, 4) mammary glands, 5) skin, 6) adipose tissue, 7) female reproductive system, and 8) synovium.
This volume addresses oxidant-reduction or redox and antioxidant sensitive molecular mechanisms and how they are implicated in different disease processes. Possible strategies to pharmacologically and/or nutritionally manipulate such redox-sensitive molecular responses are emphasized. - Reactive species as intracellular messengers - Redox regulation of cellular responses - Clinical implications of redox signaling and antioxidant therapy
Viral Proteases and Their Inhibitors provides a thorough examination of viral proteases from their molecular components, to therapeutic applications. As information on three dimensional structures and biological functions of these viral proteases become known, unexpected protein folds and unique mechanisms of proteolysis are realized. This book investigates how this facilitates the design and development of potent antiviral agents used against life-threatening viruses. Users will find descriptions of each virus that detail the structure and function of viral proteases, discuss the design and development of inhibitors, and analyze the structure-activity relationships of inhibitors. This book is ideal biochemists, virologists and those working on antiviral agents. Provides comprehensive, state-of-the-art coverage of virus infections, the virus lifecycle, and mechanisms of protease inhibition Analyzes structure-activity relationships of inhibitors of each viral protease Presents an in-depth view of the structure and function of viral proteases
This book is focused on the analysis of the role played by immune cell components in the angiogenic process associated with inflammation and tumor growth. Both innate and adaptive immune cells are involved in the mechanisms of endothelial cell proliferation, migration and activation, through the production and release of a large spectrum of pro-angiogenic mediators. These may create the specific microenvironment that favors an increased rate of tissue vascularization. The link between chronic inflammation and tumorigenesis was first proposed by Rudolf Virchow in 1863 after the observation that infiltrating leukocytes are a hallmark of tumors and first established a causative connection between the lymph reticular infiltrate at sites of chronic inflammation and the development of cancer. Tumors were described as wounds that never heal and surgeons have long described the tendency of tumors to recur in healing resection margin and it has been reported that wound healing environment provides an opportunistic matrix for tumor growth. As angiogenesis is the result of a net balance between the activities exerted by positive and negative regulators, this book will also provide information on some anti-angiogenic properties of immune cells that may be utilized for a potential pharmacological use as anti-angiogenic agents in inflammation as well as in cancer. The work is written for researchers in the field and also for graduate students which approach this matter.