Download Free Letter Report Assessing The Waters Network Science Plan Book in PDF and EPUB Free Download. You can read online Letter Report Assessing The Waters Network Science Plan and write the review.

"In 2006, the National Science Foundation (NSF) requested that the National Research Council's (NRC's) Water Science and Technology Board review and assess the adequacy of the conceptual design and planning process for NSF's proposed Water and Environmental Research Systems (WATERS) Network. In response, the NRC formed a committee that first issued an interim report evaluating the Draft Science, Education, and Design Strategy for the WATERS Network. Subsequently, in response to requests from NSF, the statement of task for the committee was modified towards reviewing a vision-level Science Plan, and the NRC and committee agreed to provide quick advice on part two of the statement of task. This letter report summarizes the committee's assessment of whether the Science Plan 'sets forth a vision of what could be accomplished with an observing network to transform water science and engineering research and education' and 'whether the Science Plan makes a compelling case for establishing the WATERS Network with Major Research and Facilities Construction (MREFC) funding.' These two questions are addressed individually and as part of an overall assessment as well."--Publisher's website.
One of the most critical issues facing the United States today is the proper management of our water resources. Water availability and quality are changing due to increasing population, urbanization, and land use and climate change, and shortages in water supply have been increasing in frequency in many parts of the country. The National Science Foundation (NSF) has entertained the Water and Environmental Research Systems (WATERS) Network as one possible initiative whereby NSF could provide the advances in the basic science needed to respond effectively to the challenge of managing water resources. The WATERS Network, a joint initiative of the Engineering, the Geosciences, and the Social, Behavioral and Economic Sciences directorates at NSF, is envisioned as an integrated national network of observatories and experimental facilities supporting research, outreach, and education on large-scale, water-related environmental problems. The proposed observatories would provide researchers with access to linked sensing networks, data repositories, and computational tools connected through high-performance computing and telecommunications networks. This book, the final of a series about the WATERS project, provides a more detailed review of the Science Plan and provides advice on collaborating with other federal agencies.
The past 15 years have seen marked progress in observing, understanding, and predicting weather. At the same time, the United States has failed to match or surpass progress in operational numerical weather prediction achieved by other nations and failed to realize its prediction potential; as a result, the nation is not mitigating weather impacts to the extent possible. This book represents a sense of the weather community as guided by the discussions of a Board on Atmospheric Sciences and Climate community workshop held in summer 2009. The book puts forth the committee's judgment on the most pressing high level, weather-focused research challenges and research to operations needs, and makes corresponding recommendations. The book addresses issues including observations, global non-hydrostatic coupled modeling, data assimilation, probabilistic forecasting, and quantitative precipitation and hydrologic forecasting. The book also identifies three important, emerging issues-predictions of very high impact weather, urban meteorology, and renewable energy development-not recognized or emphasized in previous studies. Cutting across all of these challenges is a set of socioeconomic issues, whose importance and emphasis-while increasing-has been undervalued and underemphasized in the past and warrants greater recognition and priority today.
The first two decades of the U.S. Geological Survey's National Water Quality Assessment (NAWQA) Program have provided a successful and useful assessment of U.S. water-quality conditions, how they have changed over time, and how natural features and human activities have affected those conditions. Now, planning is underway for the third decade (Cycle 3) of the Program outlined in the Science Plan, with challenges including ensuring that the NAWQA remain a national program in the face of declining resources, balancing new activities against long-term studies, and maintaining focus amidst numerous and competing stakeholder demands. The Science Plan for Cycle 3 articulates a forward-thinking vision for NAWQA science over the next decade, building on the previous cycles' data, experience, and products. Preparing for the Third Decade (Cycle 3) of the National Water-Quality Assessment (NAWQA) Program explains the national needs outlined in the plan, NAWQA's need to emphasize collaboration with other USGS and external programs, other federal agencies, state and local governments, and the private sector.
This report is intended to promote a dialogue between the scientific community and the government officials who will lead our nation in the coming years on global change research. The first section of the report is a brief description of the challenges and proposed responses needed from the highest levels of the government and the second provides more detailed discussion and is directed to agency-level issues and responses. The last section is a detailed bibliography that lists many of the specific reports on which the views outlined here are ultimately based.
People use lots of water for drinking, cooking and washing, but significantly more for producing things such as food, paper and cotton clothes. The water footprint is an indicator of water use that looks at both direct and indirect water use of a consumer or producer. Indirect use refers to the 'virtual water' embedded in tradable goods and commodities, such as cereals, sugar or cotton. The water footprint of an individual, community or business is defined as the total volume of freshwater that is used to produce the goods and services consumed by the individual or community or produced by the business. This book offers a complete and up-to-date overview of the global standard on water footprint assessment as developed by the Water Footprint Network. More specifically it: o Provides a comprehensive set of methods for water footprint assessment o Shows how water footprints can be calculated for individual processes and products, as well as for consumers, nations and businesses o Contains detailed worked examples of how to calculate green, blue and grey water footprints o Describes how to assess the sustainability of the aggregated water footprint within a river basin or the water footprint of a specific product o Includes an extensive library of possible measures that can contribute to water footprint reduction
Climate change poses many challenges that affect society and the natural world. With these challenges, however, come opportunities to respond. By taking steps to adapt to and mitigate climate change, the risks to society and the impacts of continued climate change can be lessened. The National Climate Assessment, coordinated by the U.S. Global Change Research Program, is a mandated report intended to inform response decisions. Required to be developed every four years, these reports provide the most comprehensive and up-to-date evaluation of climate change impacts available for the United States, making them a unique and important climate change document. The draft Fourth National Climate Assessment (NCA4) report reviewed here addresses a wide range of topics of high importance to the United States and society more broadly, extending from human health and community well-being, to the built environment, to businesses and economies, to ecosystems and natural resources. This report evaluates the draft NCA4 to determine if it meets the requirements of the federal mandate, whether it provides accurate information grounded in the scientific literature, and whether it effectively communicates climate science, impacts, and responses for general audiences including the public, decision makers, and other stakeholders.