Download Free Legendre Polynomials And Functions Book in PDF and EPUB Free Download. You can read online Legendre Polynomials And Functions and write the review.

This book provides an easy to follow study on Legendre Polynomials and Functions. It is also written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Legendre Polynomials and Functions that very often occur in engineering, physics, mathematics and applied sciences. I have collected many problems and gave numerous solved examples on the subject that might help the reader getting on-hand experience with the techniques presented in this note. It is hoped that this work will give some motivation to the reader to dig a bit further in the subject.
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book’s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
Tables of Normalized Associated Legendre Polynomials (1962) helps to resolve many problems in which a role is played by functions defined on the surface of a sphere, to write the functions as series in an orthogonal system of functions.
A Practical, Interdisciplinary Guide to Advanced Mathematical Methods for Scientists and Engineers Mathematical Methods in Science and Engineering, Second Edition, provides students and scientists with a detailed mathematical reference for advanced analysis and computational methodologies. Making complex tools accessible, this invaluable resource is designed for both the classroom and the practitioners; the modular format allows flexibility of coverage, while the text itself is formatted to provide essential information without detailed study. Highly practical discussion focuses on the “how-to” aspect of each topic presented, yet provides enough theory to reinforce central processes and mechanisms. Recent growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance to expand advanced mathematical methods beyond theoretical physics. This book is written with this multi-disciplinary group in mind, emphasizing practical solutions for diverse applications and the development of a new interdisciplinary science. Revised and expanded for increased utility, this new Second Edition: Includes over 60 new sections and subsections more useful to a multidisciplinary audience Contains new examples, new figures, new problems, and more fluid arguments Presents a detailed discussion on the most frequently encountered special functions in science and engineering Provides a systematic treatment of special functions in terms of the Sturm-Liouville theory Approaches second-order differential equations of physics and engineering from the factorization perspective Includes extensive discussion of coordinate transformations and tensors, complex analysis, fractional calculus, integral transforms, Green's functions, path integrals, and more Extensively reworked to provide increased utility to a broader audience, this book provides a self-contained three-semester course for curriculum, self-study, or reference. As more scientific disciplines begin to lean more heavily on advanced mathematical analysis, this resource will prove to be an invaluable addition to any bookshelf.
This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.
(308 Pages). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.
An extensive summary of mathematical functions that occur in physical and engineering problems
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ?Fq, Meijer's G-function, Fox's H-function, etc.Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions.This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, Pm, n?(z) and Qm, n?(z), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions.The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions Pm, n?(z) and Qm, n?(z), the classes of dual and triple integral equations associated with the function Pm, n-1/2+i?(chà) etc.
Nearly 200 problems, each with a detailed, worked-out solution, deal with the properties and applications of the gamma and beta functions, Legendre polynomials, and Bessel functions. 1971 edition.
Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.