Download Free Lectures On The Structure Of Algebraic Groups And Geometric Applications Book in PDF and EPUB Free Download. You can read online Lectures On The Structure Of Algebraic Groups And Geometric Applications and write the review.

This volume contains the proceedings of the 2015 Clifford Lectures on Algebraic Groups: Structures and Actions, held from March 2–5, 2015, at Tulane University, New Orleans, Louisiana. This volume consists of six articles on algebraic groups, including an enhanced exposition of the classical results of Chevalley and Rosenlicht on the structure of algebraic groups; an enhanced survey of the recently developed theory of pseudo-reductive groups; and an exposition of the recently developed operational -theory for singular varieties. In addition, there are three research articles containing previously unpublished foundational results on birational automorphism groups of algebraic varieties; solution of Hermite-Joubert problem over -closed fields; and cohomological invariants and applications to classifying spaces. The old and new results presented in these articles will hopefully become cornerstones for the future development of the theory of algebraic groups and applications. Graduate students and researchers working in the fields of algebraic geometry, number theory, and representation theory will benefit from this unique and broad compilation of fundamental results on algebraic group theory.
This volume contains original research articles by many of the world's leading researchers in algebraic and Lie groups. Its inclination is algebraic and geometic, although analytical aspects are included. The central theme reflects the interests of R. W. Richardson, viz connections between representation theory and the structure and geometry of algebraic groups. All workers on algebraic and Lie groups will find that this book contains a wealth of interesting material.
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.
This volume treats algebraic groups from a group theoretical point of view and compares the results with the analogous issues in the theory of Lie groups. It examines a classification of algebraic groups and Lie groups having only few subgroups.
This volume contains the original lecture notes presented by A. Weil in which the concept of adeles was first introduced, in conjunction with various aspects of C.L. Siegel’s work on quadratic forms. Serving as an introduction to the subject, these notes may also provide stimulation for further research.
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti–Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel–Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.