Download Free Lectures On Riemann Surfaces Book in PDF and EPUB Free Download. You can read online Lectures On Riemann Surfaces and write the review.

This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
A sequel to Lectures on Riemann Surfaces (Mathematical Notes, 1966), this volume continues the discussion of the dimensions of spaces of holomorphic cross-sections of complex line bundles over compact Riemann surfaces. Whereas the earlier treatment was limited to results obtainable chiefly by one-dimensional methods, the more detailed analysis presented here requires the use of various properties of Jacobi varieties and of symmetric products of Riemann surfaces, and so serves as a further introduction to these topics as well. The first chapter consists of a rather explicit description of a canonical basis for the Abelian differentials on a marked Riemann surface, and of the description of the canonical meromorphic differentials and the prime function of a marked Riemann surface. Chapter 2 treats Jacobi varieties of compact Riemann surfaces and various subvarieties that arise in determining the dimensions of spaces of holomorphic cross-sections of complex line bundles. In Chapter 3, the author discusses the relations between Jacobi varieties and symmetric products of Riemann surfaces relevant to the determination of dimensions of spaces of holomorphic cross-sections of complex line bundles. The final chapter derives Torelli's theorem following A. Weil, but in an analytical context. Originally published in 1973. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
The first College on Riemann Surfaces centered on the theory of Riemann surfaces and their moduli and its applications to physics. This volume contains revised versions of the notes distributed at the College.
An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
The description for this book, Lectures on Vector Bundles over Riemann Surfaces. (MN-6), Volume 6, will be forthcoming.
These notes present new as well as classical results from the theory of theta functions on Riemann surfaces, a subject of renewed interest in recent years. Topics discussed here include: the relations between theta functions and Abelian differentials, theta functions on degenerate Riemann surfaces, Schottky relations for surfaces of special moduli, and theta functions on finite bordered Riemann surfaces.
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
This book and the following second volume is an introduction into modern algebraic geometry. In the first volume the methods of homological algebra, theory of sheaves, and sheaf cohomology are developed. These methods are indispensable for modern algebraic geometry, but they are also fundamental for other branches of mathematics and of great interest in their own. In the last chapter of volume I these concepts are applied to the theory of compact Riemann surfaces. In this chapter the author makes clear how influential the ideas of Abel, Riemann and Jacobi were and that many of the modern methods have been anticipated by them.