Download Free Lectures On Phase Transitions Book in PDF and EPUB Free Download. You can read online Lectures On Phase Transitions and write the review.

Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book is widely used both for core graduate statistical mechanics courses as well as for more specialized courses. Emphasizing understanding and clarity rather than technical manipulation, these lectures de-mystify the subject and show precisely "how things work." Goldenfeld keeps in mind a reader who wants to understand why things are done, what the results are, and what in principle can go wrong. The book reaches both experimentalists and theorists, students and even active researchers, and assumes only a prior knowledge of statistical mechanics at the introductory graduate level.Advanced, never-before-printed topics on the applications of renormalization group far from equilibrium and to partial differential equations add to the uniqueness of this book.
Covering the elementary aspects of the physics of phases transitions and the renormalization group, this popular book is widely used both for core graduate statistical mechanics courses as well as for more specialized courses. Emphasizing understanding and clarity rather than technical manipulation, these lectures de-mystify the subject and show precisely "how things work." Goldenfeld keeps in mind a reader who wants to understand why things are done, what the results are, and what in principle can go wrong. The book reaches both experimentalists and theorists, students and even active researchers, and assumes only a prior knowledge of statistical mechanics at the introductory graduate level.Advanced, never-before-printed topics on the applications of renormalization group far from equilibrium and to partial differential equations add to the uniqueness of this book.
The book provides an introduction to the physics which underlies phase transitions and to the theoretical techniques currently at our disposal for understanding them. It will be useful for advanced undergraduates, for post-graduate students undertaking research in related fields, and for established researchers in experimental physics, chemistry, and metallurgy as an exposition of current theoretical understanding. - ;Recent developments have led to a good understanding of universality; why phase transitions in systems as diverse as magnets, fluids, liquid crystals, and superconductors can be brought under the same theoretical umbrella and well described by simple models. This book describes the physics underlying universality and then lays out the theoretical approaches now available for studying phase transitions. Traditional techniques, mean-field theory, series expansions, and the transfer matrix, are described; the Monte Carlo method is covered, and two chapters are devoted to the renormalization group, which led to a break-through in the field. The book will be useful as a textbook for a course in `Phase Transitions', as an introduction for graduate students undertaking research in related fields, and as an overview for scientists in other disciplines who work with phase transitions but who are not aware of the current tools in the armoury of the theoretical physicist. - ;Introduction; Statistical mechanics and thermodynamics; Models; Mean-field theories; The transfer matrix; Series expansions; Monte Carlo simulations; The renormalization group; Implementations of the renormalization group. -
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.
As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
Theory of Phase Transitions: Rigorous Results is inspired by lectures on mathematical problems of statistical physics presented in the Mathematical Institute of the Hungarian Academy of Sciences, Budapest. The aim of the book is to expound a series of rigorous results about the theory of phase transitions. The book consists of four chapters, wherein the first chapter discusses the Hamiltonian, its symmetry group, and the limit Gibbs distributions corresponding to a given Hamiltonian. The second chapter studies the phase diagrams of lattice models that are considered at low temperatures. The notions of a ground state of a Hamiltonian and the stability of the set of the ground states of a Hamiltonian are also introduced. Chapter 3 presents the basic theorems about lattice models with continuous symmetry, and Chapter 4 focuses on the second-order phase transitions and on the theory of scaling probability distributions, connected to these phase transitions. Specialists in statistical physics and other related fields will greatly benefit from this publication.
This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.
Quantum phase transitions, driven by quantum fluctuations, exhibit intriguing features offering the possibility of potentially new applications, e.g. in quantum information sciences. Major advances have been made in both theoretical and experimental investigations of the nature and behavior of quantum phases and transitions in cooperatively interacting many-body quantum systems. For modeling purposes, most of the current innovative and successful research in this field has been obtained by either directly or indirectly using the insights provided by quantum (or transverse field) Ising models because of the separability of the cooperative interaction from the tunable transverse field or tunneling term in the relevant Hamiltonian. Also, a number of condensed matter systems can be modeled accurately in this approach, hence granting the possibility to compare advanced models with actual experimental results. This work introduces these quantum Ising models and analyses them both theoretically and numerically in great detail. With its tutorial approach the book addresses above all young researchers who wish to enter the field and are in search of a suitable and self-contained text, yet it will also serve as a valuable reference work for all active researchers in this area.
The 2017 PIMS-CRM Summer School in Probability was held at the Pacific Institute for the Mathematical Sciences (PIMS) at the University of British Columbia in Vancouver, Canada, during June 5-30, 2017. It had 125 participants from 20 different countries, and featured two main courses, three mini-courses, and twenty-nine lectures. The lecture notes contained in this volume provide introductory accounts of three of the most active and fascinating areas of research in modern probability theory, especially designed for graduate students entering research: Scaling limits of random trees and random graphs (Christina Goldschmidt) Lectures on the Ising and Potts models on the hypercubic lattice (Hugo Duminil-Copin) Extrema of the two-dimensional discrete Gaussian free field (Marek Biskup) Each of these contributions provides a thorough introduction that will be of value to beginners and experts alike.