Download Free Lectures On Modern Mathematics Topics In Classical Analysis Book in PDF and EPUB Free Download. You can read online Lectures On Modern Mathematics Topics In Classical Analysis and write the review.

Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.
On Applications and Theory of Functional Equations focuses on the principles and advancement of numerical approaches used in functional equations. The publication first offers information on the history of functional equations, noting that the research on functional equations originated in problems related to applied mathematics. The text also highlights the influence of J. d'Alembert, S. D. Poisson, E. Picard, and A. L. Cauchy in promoting the processes of numerical analyses involving functional equations. The role of vectors in solving functional equations is also noted. The book ponders on the international Fifth Annual Meeting on Functional Equations, held in Waterloo, Ontario, Canada on April 24-30, 1967. The meeting gathered participants from America, Asia, Australia, and Europe. One of the topics presented at the meeting focuses on the survey of materials dealing with the progress of approaches in the processes and methodologies involved in solving problems dealing with functional equations. The influence, works, and contributions of A. L. Cauchy, G. Darboux, and G. S. Young to the field are also underscored. The publication is a valuable reference for readers interested in functional equations.
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities. This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits. Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.
This distinctly nonclassical treatment focuses on developing aspects that differ from the theory of ordinary metric spaces, working directly with probability distribution functions rather than random variables. The two-part treatment begins with an overview that discusses the theory's historical evolution, followed by a development of related mathematical machinery. The presentation defines all needed concepts, states all necessary results, and provides relevant proofs. The second part opens with definitions of probabilistic metric spaces and proceeds to examinations of special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. Throughout, the authors focus on developing aspects that differ from the theory of ordinary metric spaces, rather than simply transferring known metric space results to a more general setting.
Biographic Memoirs: Volume 63 contains the biographies of deceased members of the National Academy of Sciences and bibliographies of their published works. Each biographical essay was written by a member of the Academy familiar with the professional career of the deceased. For historical and bibliographical purposes, these volumes are worth returning to time and again.
An illustrated exploration of mathematics and its history, beginning with a study of numbers and their symbols, and continuing with a broad survey that includes consideration of algebra, geometry, hyperbolic functions, fractals, and many other mathematical functions.
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.
This book illustrates the basic ideas of regularity properties of functional equations by simple examples. It then treats most of the modern results about regularity of non-composite functional equations of several variables in a unified fashion. A long introduction highlights the basic ideas for beginners and several applications are also included.