Download Free Least Squares Approximation Book in PDF and EPUB Free Download. You can read online Least Squares Approximation and write the review.

Develops the full power of the least-squares method Enables engineers and scientists to apply the method to their specific problem Deals with linear as well as with non-linear least-squares, parametric as well as non-parametric methods
The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.
Due to the continuing progress of sensor technology, the availability of 3-D cameras is already foreseeable. These cameras are capable of generating a large set of measurement points within a very short time. There are a variety of 3-D camera applications in the fields of robotics, rapid product development and digital factories. In order to not only visualize the point cloud but also to recognize 3-D object models from the point cloud and then further process them in CAD systems, efficient and stable algorithms for 3-D information processing are required. For the automatic segmentation and recognition of such geometric primitives as plane, sphere, cylinder, cone and torus in a 3-D point cloud, efficient software has recently been developed at the Fraunhofer IPA by Sung Joon Ahn. This book describes in detail the complete set of ‘best-?t’ algorithms for general curves and surfaces in space which are employed in the Fraunhofer software.
This book serves as a set of lecture notes for a senior undergraduate level course on the introduction to numerical computation, which was developed through 4 semesters of teaching the course over 10 years. The book requires minimum background knowledge from the students, including only a three-semester of calculus, and a bit on matrices.The book covers many of the introductory topics for a first course in numerical computation, which fits in the short time frame of a semester course. Topics range from polynomial approximations and interpolation, to numerical methods for ODEs and PDEs. Emphasis was made more on algorithm development, basic mathematical ideas behind the algorithms, and the implementation in Matlab.The book is supplemented by two sets of videos, available through the author's YouTube channel. Homework problem sets are provided for each chapter, and complete answer sets are available for instructors upon request.The second edition contains a set of selected advanced topics, written in a self-contained manner, suitable for self-learning or as additional material for an honored version of the course. Videos are also available for these added topics.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
A lucid explanation of the intricacies of both simple and complex least squares methods. As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems. Included are • an overview of computational methods together with their properties and advantages • topics from statistical regression analysis that help readers to understand and evaluate the computed solutions • many examples that illustrate the techniques and algorithms Least Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.
This second edition accounts for many major developments in generalized inverses while maintaining the informal and leisurely style of the 1974 first edition. Added material includes a chapter on applications, new exercises, and an appendix on the work of E.H. Moore.
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
The development of the internationally standardized language ALGOL has made it possible to prepare procedures which can be used without modification whenever a computer with an ALGOL translator is available. Volume Ia in this series gave details of the restricted version of ALGOL which is to be employed throughout the Handbook, and volume Ib described its implementation on a computer. Each of the subsequent volumes will be devoted to a presentation of the basic algorithms in some specific areas of numerical analysis. This is the first such volume and it was feIt that the topic Linear Algebra was a natural choice, since the relevant algorithms are perhaps the most widely used in numerical analysis and have the advantage of forming a weil defined dass. The algorithms described here fall into two main categories, associated with the solution of linear systems and the algebraic eigenvalue problem respectively and each set is preceded by an introductory chapter giving a comparative assessment.