Download Free Learn Python From An Expert The Complete Guide With Artificial Intelligence Book in PDF and EPUB Free Download. You can read online Learn Python From An Expert The Complete Guide With Artificial Intelligence and write the review.

New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
The Ultimate Guide to Advanced Python and Artificial Intelligence: Unleash the Power of Code! Are you ready to take your Python programming skills to the next level and dive into the exciting world of artificial intelligence? Look no further! We proudly present the comprehensive book written by renowned author Edson L P Camacho: "Advanced Python: Mastering AI." In today's rapidly evolving technological landscape, the demand for AI professionals is soaring. Python, with its simplicity and versatility, has become the go-to language for AI development. Whether you are a seasoned Pythonista or a beginner eager to learn, this book is your gateway to mastering AI concepts and enhancing your programming expertise. What sets "Advanced Python: Mastering AI" apart from other books is its unparalleled combination of in-depth theory and hands-on practicality. Edson L P Camacho, a leading expert in the field, guides you through every step, from laying the foundation of Python fundamentals to implementing cutting-edge AI algorithms. Here's a glimpse of what you'll find within the pages of this comprehensive guide: 1. Python Fundamentals: Review and reinforce your knowledge of Python basics, including data types, control flow, functions, and object-oriented programming. Build a solid foundation to tackle complex AI concepts. 2. Data Manipulation and Visualization: Learn powerful libraries such as NumPy, Pandas, and Matplotlib to handle and analyze data. Understand how to preprocess and visualize data effectively for AI applications. 3. Machine Learning Essentials: Dive into the world of machine learning and explore popular algorithms like linear regression, decision trees, support vector machines, and neural networks. Discover how to train, evaluate, and optimize models for various tasks. 4. Deep Learning and Neural Networks: Delve deeper into neural networks, the backbone of modern AI. Gain insights into deep learning architectures, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Implement advanced techniques like transfer learning and generative models. 5. Natural Language Processing (NLP): Explore the fascinating field of NLP and learn how to process and analyze textual data using Python. Discover techniques like sentiment analysis, named entity recognition, and text generation. 6. Computer Vision: Unleash the power of Python for image and video analysis. Build computer vision applications using popular libraries like OpenCV and TensorFlow. Understand concepts like object detection, image segmentation, and image captioning. 7. Reinforcement Learning: Embark on the exciting journey of reinforcement learning. Master the fundamentals of Q-learning, policy gradients, and deep Q-networks. Create intelligent agents that can learn and make decisions in dynamic environments. "Advanced Python: Mastering AI" not only equips you with the theoretical knowledge but also provides numerous real-world examples and projects to reinforce your understanding. Each chapter is accompanied by practical exercises and coding challenges to sharpen your skills and boost your confidence. Don't miss the opportunity to stay ahead in this AI-driven era. Order your copy of "Advanced Python: Mastering AI" today and unlock the full potential of Python programming with artificial intelligence. Take your career to new heights and become a proficient AI developer. Get ready to write the code that shapes the future!
Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems Key FeaturesMaster supervised, unsupervised, and semi-supervised ML algorithms and their implementation Build deep learning models for object detection, image classification, similarity learning, and moreBuild, deploy, and scale end-to-end deep neural network models in a production environmentBook Description This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: Mastering Machine Learning Algorithms by Giuseppe BonaccorsoMastering TensorFlow 1.x by Armando FandangoDeep Learning for Computer Vision by Rajalingappaa ShanmugamaniWhat you will learnExplore how an ML model can be trained, optimized, and evaluatedWork with Autoencoders and Generative Adversarial NetworksExplore the most important Reinforcement Learning techniquesBuild end-to-end deep learning (CNN, RNN, and Autoencoders) modelsWho this book is for This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.
Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
A hands-on roadmap to using Python for artificial intelligence programming In Practical Artificial Intelligence Programming with Python: From Zero to Hero, veteran educator and photophysicist Dr. Perry Xiao delivers a thorough introduction to one of the most exciting areas of computer science in modern history. The book demystifies artificial intelligence and teaches readers its fundamentals from scratch in simple and plain language and with illustrative code examples. Divided into three parts, the author explains artificial intelligence generally, machine learning, and deep learning. It tackles a wide variety of useful topics, from classification and regression in machine learning to generative adversarial networks. He also includes: Fulsome introductions to MATLAB, Python, AI, machine learning, and deep learning Expansive discussions on supervised and unsupervised machine learning, as well as semi-supervised learning Practical AI and Python “cheat sheet” quick references This hands-on AI programming guide is perfect for anyone with a basic knowledge of programming—including familiarity with variables, arrays, loops, if-else statements, and file input and output—who seeks to understand foundational concepts in AI and AI development.
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
THIS BOOK INCLUDES: Python for beginners PYTHON PROGRAMMING - The Ultimate Guide from beginners to Experts PYTHON PROGRAMMING - The Ultimate Expert Guide . You Are About to Discover The Ins And Outs Of Python Programming Language From The Basics To Its Application In Advanced Computing Concepts Like Machine Learning, Computer Science, Artificial Intelligence And More! Python is now: The preferred programming language for advanced computing concepts like data analytics, machine learning, artificial intelligence, big data, computer science and more The most taught first programming language One of the most common used programming languages in the world The programming language that has been used to write code for important processes on some of the most popular websites in the world like Facebook, Dropbox, Google Maps, YouTube, Instagram and many others Do you know why? The short answer is "because it works". And the long answer is this: "It is highly scalable, easy to use, with a rich powerful library that make it possible to use it for everything from writing simple code to advanced computing, a very active online community, a large collection of third party modules and packages as well as the fact that it also supports object oriented development!" By virtue that you are reading this, it is clear you want to start learning programming with python, from the basics all the way to the advanced computing stuff. And this 3 in 1 book is about to show you the ins and outs of python to do just that. I know you have lots of questions going through your mind... Where exactly do you start as you learn python? Why should you make python your programming language of choice whether you are a complete beginner to programming or not? How do you write your first program with python? How can you start using python for advanced computing stuff like artificial intelligence, robotics, machine learning, data analytics, big data, data science and the likes? If you have these and other related questions, this 3 in 1 book is for you so keep reading. More precisely, this 3 in 1 book will teach you: An in-depth analysis of python; what it is and how to install it on different operating systems How you stand to benefit by learning Python Why python is considered the most suitable programming language for advanced computing such as in machine learning, deep learning, artificial intelligence etc. Steps to take to write your very first program on python Step by step process to perform data analysis with python Everything you need to know about variables in python The most suitable python libraries you should use for advanced computing How to leverage the power of python to handle a variety of machine learning algorithms How you can insert comments in python to keep your code clean How to work with files on python Simple projects to get you started with python Varied data types used in python Powerful tips for successful use of python and how to handle any problems in code that may arise And MUCH MORE! Even if this is your first programming language to learn, you are in safe hands, as this book will break down the seemingly complex terms and concepts using simple, straightforward language to enable you put what you learn into action. Click Buy Now to get started!
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.
Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills