Download Free Learn From Scratch Signal And Image Processing With Python Gui Book in PDF and EPUB Free Download. You can read online Learn From Scratch Signal And Image Processing With Python Gui and write the review.

In this book, you will learn how to use OpenCV, NumPy library and other libraries to perform signal processing, image processing, object detection, and feature extraction with Python GUI (PyQt). You will learn how to filter signals, detect edges and segments, and denoise images with PyQt. You will also learn how to detect objects (face, eye, and mouth) using Haar Cascades and how to detect features on images using Harris Corner Detection, Shi-Tomasi Corner Detector, Scale-Invariant Feature Transform (SIFT), and Features from Accelerated Segment Test (FAST). In Chapter 1, you will learn: Tutorial Steps To Create A Simple GUI Application, Tutorial Steps to Use Radio Button, Tutorial Steps to Group Radio Buttons, Tutorial Steps to Use CheckBox Widget, Tutorial Steps to Use Two CheckBox Groups, Tutorial Steps to Understand Signals and Slots, Tutorial Steps to Convert Data Types, Tutorial Steps to Use Spin Box Widget, Tutorial Steps to Use ScrollBar and Slider, Tutorial Steps to Use List Widget, Tutorial Steps to Select Multiple List Items in One List Widget and Display It in Another List Widget, Tutorial Steps to Insert Item into List Widget, Tutorial Steps to Use Operations on Widget List, Tutorial Steps to Use Combo Box, Tutorial Steps to Use Calendar Widget and Date Edit, and Tutorial Steps to Use Table Widget. In Chapter 2, you will learn: Tutorial Steps To Create A Simple Line Graph, Tutorial Steps To Create A Simple Line Graph in Python GUI, Tutorial Steps To Create A Simple Line Graph in Python GUI: Part 2, Tutorial Steps To Create Two or More Graphs in the Same Axis, Tutorial Steps To Create Two Axes in One Canvas, Tutorial Steps To Use Two Widgets, Tutorial Steps To Use Two Widgets, Each of Which Has Two Axes, Tutorial Steps To Use Axes With Certain Opacity Levels, Tutorial Steps To Choose Line Color From Combo Box, Tutorial Steps To Calculate Fast Fourier Transform, Tutorial Steps To Create GUI For FFT, Tutorial Steps To Create GUI For FFT With Some Other Input Signals, Tutorial Steps To Create GUI For Noisy Signal, Tutorial Steps To Create GUI For Noisy Signal Filtering, and Tutorial Steps To Create GUI For Wav Signal Filtering. In Chapter 3, you will learn: Tutorial Steps To Convert RGB Image Into Grayscale, Tutorial Steps To Convert RGB Image Into YUV Image, Tutorial Steps To Convert RGB Image Into HSV Image, Tutorial Steps To Filter Image, Tutorial Steps To Display Image Histogram, Tutorial Steps To Display Filtered Image Histogram, Tutorial Steps To Filter Image With CheckBoxes, Tutorial Steps To Implement Image Thresholding, and Tutorial Steps To Implement Adaptive Image Thresholding. In Chapter 4, you will learn: Tutorial Steps To Generate And Display Noisy Image, Tutorial Steps To Implement Edge Detection On Image, Tutorial Steps To Implement Image Segmentation Using Multiple Thresholding and K-Means Algorithm, and Tutorial Steps To Implement Image Denoising. In Chapter 5, you will learn: Tutorial Steps To Detect Face, Eye, and Mouth Using Haar Cascades, Tutorial Steps To Detect Face Using Haar Cascades with PyQt, Tutorial Steps To Detect Eye, and Mouth Using Haar Cascades with PyQt, and Tutorial Steps To Extract Detected Objects. In Chapter 6, you will learn: Tutorial Steps To Detect Image Features Using Harris Corner Detection, Tutorial Steps To Detect Image Features Using Shi-Tomasi Corner Detection, Tutorial Steps To Detect Features Using Scale-Invariant Feature Transform (SIFT), and Tutorial Steps To Detect Features Using Features from Accelerated Segment Test (FAST). You can download the XML files from https://viviansiahaan.blogspot.com/2023/06/learn-from-scratch-signal-and-image.html.
"Start from Scratch: Digital Image Processing with Tkinter" is a beginner-friendly guide that delves into the basics of digital image processing using Python and Tkinter, a popular GUI library. The project is divided into distinct modules, each focusing on a specific aspect of image manipulation. The journey begins with an exploration of Image Color Space. Here, readers encounter the Main Form, which serves as the entry point to the application. It provides a user-friendly interface for loading images, selecting color spaces, and visualizing various color channels. The Fundamental Utilities play a crucial role by providing core functionalities like loading images, converting color spaces, and manipulating pixel data. The project also includes forms dedicated to displaying individual color channels and offering insights into the current color space through histograms. The Plotting Utilities module facilitates the creation of visual representations such as plots and graphs, enhancing the user's understanding of color spaces. Moving on, the Image Transformation section introduces readers to techniques like the Fast Fourier Transform (FFT). The Fast Fourier Transform Utilities module enables the implementation of FFT algorithms for converting images from spatial to frequency domains. A corresponding form allows users to view images in the frequency domain, with additional adjustments made to the plotting utilities for effective visualization. In the context of Discrete Cosine Transform (DCT), readers gain insights into algorithms and functions for transforming images. The Form for Discrete Cosine Transform aids in visualizing images in the DCT domain, while the plotting utilities are modified to accommodate these transformed images. The Discrete Sine Transform (DST) section introduces readers to DST algorithms and their role in image transformation. A dedicated form for visualizing images in the DST domain is provided, and the plotting utilities are further extended to handle these transformations effectively. Moving Average Smoothing is another critical aspect covered in the project. The Filter2D Utilities facilitate the application of moving average smoothing techniques. Additionally, metrics utilities enable the assessment of the smoothing process, with forms available for displaying both metrics and the smoothed images. Next, the project addresses Exponential Moving Average techniques, modifying the existing utilities to accommodate this specific approach. Similarly, forms for visualizing results and metrics are provided. Readers are then introduced to techniques like Median Filtering, Savitzky-Golay Filtering, and Wiener Filtering. The Filter2D Utilities are adapted to facilitate these filtering methods, and metrics utilities are employed to assess the effectiveness of each technique. Forms dedicated to each filtering method provide a platform for visualizing the results. The final section of the project explores techniques such as Total Variation Denoising, Non-Local Means Denoising, and PCA Denoising. The Filter2D Utilities are once again modified to support these denoising techniques. Metrics utilities are employed to evaluate the denoising process, and dedicated forms offer visualization capabilities. By breaking down the project into these modules, readers can systematically grasp the fundamentals of digital image processing, gradually building their skills from one concept to the next. Each section provides hands-on experience and practical knowledge, making it an ideal starting point for beginners in image processing.
You will learn to create GUI applications using the Qt toolkit. The Qt toolkit, also popularly known as Qt, is a cross-platform application and UI framework developed by Trolltech, which is used to develop GUI applications. You will develop an existing GUI by adding several Line Edit widgets to read input, which are used to set the range and step of the graph (signal). Next, Now, you can use a widget for each graph. Add another Widget from Containers in gui_graphics.ui using Qt Designer. Then, Now, you can use two Widgets, each of which has two canvases. The two canvases has QVBoxLayout in each Widget. Finally, you will apply those Widgets to display the results of signal and image processing techniques.
In this project, you will create a multi-form GUI to implement digital signal processing. Creating a GUI involves designing an interface where users can input parameters and visualize the results of various signal processing techniques. Each form corresponds to a specific technique and is implemented using the tkinter library. The "Simple Sinusoidal Form" allows users to generate and visualize a basic sinusoidal signal. It includes input fields for parameters like frequency, amplitude, and time period. The utilities associated with this form provide functions to generate and plot the simple sinusoidal signal. The "Two Sinusoidals Form" extends the previous form, enabling users to generate and visualize two combined sinusoidal signals. It provides input fields for frequencies, amplitudes, and time periods of both signals. The utilities handle the generation and plotting of the combined sinusoidal signals. The "More Two Sinusoidals Form" further extends the previous form to generate and visualize additional combined sinusoidal signals. It includes input fields for frequencies, amplitudes, and time periods of three sinusoidal signals. The utilities handle the generation and plotting of these combined signals. Forms for various modulation techniques (AM, FM, PM, ASK, FSK, PSK) are available. These allow users to generate and visualize modulated signals by providing input fields for modulation indices, carrier frequencies, and time periods. The utilities in each form handle the signal generation and modulation process, as well as the plotting of the modulated signals. Forms for different filter designs (FIR, Butterworth, Chebyshev Type 1) cover lowpass, highpass, bandpass, and bandstop filters. They include input fields for filter order, cutoff frequencies, and other relevant parameters. The utilities in each form implement the filter design and frequency response plotting. Wavelet transformation forms focus on wavelet-based techniques, including scaling, decomposition, and denoising. They provide input fields for wavelet type, thresholding methods, and other wavelet-specific parameters. The utilities handle the wavelet transformations, denoising, and visualizing the results. Forms for various denoising techniques (MA, EMA, Median, SGF, Wiener, TV, NLM, PCA) cover different smoothing and denoising methods. They offer input fields for relevant denoising parameters. The utilities for each form implement the denoising process and display the denoised signals. Each form's utility methods interact with the GUI elements, taking user inputs and performing the corresponding signal processing tasks. These utilities encapsulate the underlying algorithms and ensure a seamless interaction between the user interface and the backend computations. In summary, this session involves creating a comprehensive GUI for a wide range of signal processing techniques, including signal generation, modulation, filtering, wavelet transformations, and various denoising methods. Each form and its associated utilities handle specific tasks, ensuring an intuitive and effective user experience.
In this book, you will create three Java GUI applications using MySQL, MariaDB, and PostgreSQL. In this book, you will learn how to build from scratch a database management system using Java. In designing a GUI and as an IDE, you will make use of the NetBeans tool. Gradually and step by step, you will be taught how to utilize three different databases in Java. In chapter one, you will create School database and its six tables. In chapter two, you will study: Creating the initial three table projects in the school database: Teacher table, TClass table, and Subject table; Creating database configuration files; Creating a Java GUI for viewing and navigating the contents of each table; Creating a Java GUI for inserting and editing tables; and Creating a Java GUI to join and query the three tables. In chapter three, you will learn: Creating the main form to connect all forms; Creating a project will add three more tables to the school database: the Student table, the Parent table, and Tuition table; Creating a Java GUI to view and navigate the contents of each table; Creating a Java GUI for editing, inserting, and deleting records in each table; Creating a Java GUI to join and query the three tables and all six. In chapter four, you will study how to query the six tables. In chapter five, you will learn the basics of cryptography using Java. Here, you will learn how to write a Java program to count Hash, MAC (Message Authentication Code), store keys in a KeyStore, generate PrivateKey and PublicKey, encrypt / decrypt data, and generate and verify digital prints. In chapter six, you will create Bank database and its tables. In chapter seven, you will learn how to create and store salt passwords and verify them. You will create a Login table. In this case, you will see how to create a Java GUI using NetBeans to implement it. In addition to the Login table, in this chapter you will also create a Client table. In the case of the Client table, you will learn how to generate and save public and private keys into a database. You will also learn how to encrypt / decrypt data and save the results into a database. In chapter eight, you will create an Account table. This account table has the following ten fields: account_id (primary key), client_id (primarykey), account_number, account_date, account_type, plain_balance, cipher_balance, decipher_balance, digital_signature, and signature_verification. In this case, you will learn how to implement generating and verifying digital prints and storing the results into a database. In chapter nine, you will create a Client_Data table, which has the following seven fields: client_data_id (primary key), account_id (primary_key), birth_date, address, mother_name, telephone, and photo_path. In chapter ten, you will be taught how to create Crime database and its tables. In chapter eleven, you will be taught how to extract image features, utilizing BufferedImage class, in Java GUI. In chapter twelve, you will be taught to create Java GUI to view, edit, insert, and delete Suspect table data. This table has eleven columns: suspect_id (primary key), suspect_name, birth_date, case_date, report_date, suspect_ status, arrest_date, mother_name, address, telephone, and photo. In chapter thirteen, you will be taught to create Java GUI to view, edit, insert, and delete Feature_Extraction table data. This table has eight columns: feature_id (primary key), suspect_id (foreign key), feature1, feature2, feature3, feature4, feature5, and feature6. In chapter fourteen, you will add two tables: Police_Station and Investigator. These two tables will later be joined to Suspect table through another table, File_Case. The Police_Station has six columns: police_station_id (primary key), location, city, province, telephone, and photo. The Investigator has eight columns: investigator_id (primary key), investigator_name, rank, birth_date, gender, address, telephone, and photo. Here, you will design a Java GUI to display, edit, fill, and delete data in both tables. In chapter fifteen, you will add two tables: Victim and File_Case. The File_Case table will connect four other tables: Suspect, Police_Station, Investigator and Victim. The Victim table has nine columns: victim_id (primary key), victim_name, crime_type, birth_date, crime_date, gender, address, telephone, and photo. The File_Case has seven columns: file_case_id (primary key), suspect_id (foreign key), police_station_id (foreign key), investigator_id (foreign key), victim_id (foreign key), status, and description. Here, you will also design a Java GUI to display, edit, fill, and delete data in both tables.
In this project, we embarked on a comprehensive journey through the world of machine learning and model evaluation. Our primary goal was to develop a Tkinter GUI and assess various machine learning models on a given dataset to identify the best-performing one. This process is essential in solving real-world problems, as it helps us select the most suitable algorithm for a specific task. By crafting this Tkinter-powered GUI, we provided an accessible and user-friendly interface for users engaging with machine learning models. It simplified intricate processes, allowing users to load data, select models, initiate training, and visualize results without necessitating code expertise or command-line operations. This GUI introduced a higher degree of usability and accessibility to the machine learning workflow, accommodating users with diverse levels of technical proficiency. We began by loading and preprocessing the dataset, a fundamental step in any machine learning project. Proper data preprocessing involves tasks such as handling missing values, encoding categorical features, and scaling numerical attributes. These operations ensure that the data is in a format suitable for training and testing machine learning models. Once our data was ready, we moved on to the model selection phase. We evaluated multiple machine learning algorithms, each with its strengths and weaknesses. The models we explored included Logistic Regression, Random Forest, K-Nearest Neighbors (KNN), Decision Trees, Gradient Boosting, Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), and Support Vector Classifier (SVC). For each model, we employed a systematic approach to find the best hyperparameters using grid search with cross-validation. This technique allowed us to explore different combinations of hyperparameters and select the configuration that yielded the highest accuracy on the training data. These hyperparameters included settings like the number of estimators, learning rate, and kernel function, depending on the specific model. After obtaining the best hyperparameters for each model, we trained them on our preprocessed dataset. This training process involved using the training data to teach the model to make predictions on new, unseen examples. Once trained, the models were ready for evaluation. We assessed the performance of each model using a set of well-established evaluation metrics. These metrics included accuracy, precision, recall, and F1-score. Accuracy measured the overall correctness of predictions, while precision quantified the proportion of true positive predictions out of all positive predictions. Recall, on the other hand, represented the proportion of true positive predictions out of all actual positives, highlighting a model's ability to identify positive cases. The F1-score combined precision and recall into a single metric, helping us gauge the overall balance between these two aspects. To visualize the model's performance, we created key graphical representations. These included confusion matrices, which showed the number of true positive, true negative, false positive, and false negative predictions, aiding in understanding the model's classification results. Additionally, we generated Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) scores, which depicted a model's ability to distinguish between classes. High AUC values indicated excellent model performance. Furthermore, we constructed true values versus predicted values diagrams to provide insights into how well our models aligned with the actual data distribution. Learning curves were also generated to observe a model's performance as a function of training data size, helping us assess whether the model was overfitting or underfitting. Lastly, we presented the results in a clear and organized manner, saving them to Excel files for easy reference. This allowed us to compare the performance of different models and make an informed choice about which one to select for our specific task. In summary, this project was a comprehensive exploration of the machine learning model development and evaluation process. We prepared the data, selected and fine-tuned various models, assessed their performance using multiple metrics and visualizations, and ultimately arrived at a well-informed decision about the most suitable model for our dataset. This approach serves as a valuable blueprint for tackling real-world machine learning challenges effectively.
The dataset used in this project was collected from the Faculty of Engineering and Faculty of Educational Sciences students in 2019. The purpose is to predict students' end-of-term performances using ML techniques. Attribute information in the dataset are as follows: Student ID; Student Age (1: 18-21, 2: 22-25, 3: above 26); Sex (1: female, 2: male); Graduated high-school type: (1: private, 2: state, 3: other); Scholarship type: (1: None, 2: 25%, 3: 50%, 4: 75%, 5: Full); Additional work: (1: Yes, 2: No); Regular artistic or sports activity: (1: Yes, 2: No); Do you have a partner: (1: Yes, 2: No); Total salary if available (1: USD 135-200, 2: USD 201-270, 3: USD 271-340, 4: USD 341-410, 5: above 410); Transportation to the university: (1: Bus, 2: Private car/taxi, 3: bicycle, 4: Other); Accommodation type in Cyprus: (1: rental, 2: dormitory, 3: with family, 4: Other); Mother's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Father's education: (1: primary school, 2: secondary school, 3: high school, 4: university, 5: MSc., 6: Ph.D.); Number of sisters/brothers (if available): (1: 1, 2:, 2, 3: 3, 4: 4, 5: 5 or above); Parental status: (1: married, 2: divorced, 3: died - one of them or both); Mother's occupation: (1: retired, 2: housewife, 3: government officer, 4: private sector employee, 5: self-employment, 6: other); Father's occupation: (1: retired, 2: government officer, 3: private sector employee, 4: self-employment, 5: other); Weekly study hours: (1: None, 2: <5 hours, 3: 6-10 hours, 4: 11-20 hours, 5: more than 20 hours); Reading frequency (non-scientific books/journals): (1: None, 2: Sometimes, 3: Often); Reading frequency (scientific books/journals): (1: None, 2: Sometimes, 3: Often); Attendance to the seminars/conferences related to the department: (1: Yes, 2: No); Impact of your projects/activities on your success: (1: positive, 2: negative, 3: neutral); Attendance to classes (1: always, 2: sometimes, 3: never); Preparation to midterm exams 1: (1: alone, 2: with friends, 3: not applicable); Preparation to midterm exams 2: (1: closest date to the exam, 2: regularly during the semester, 3: never); Taking notes in classes: (1: never, 2: sometimes, 3: always); Listening in classes: (1: never, 2: sometimes, 3: always); Discussion improves my interest and success in the course: (1: never, 2: sometimes, 3: always); Flip-classroom: (1: not useful, 2: useful, 3: not applicable); Cumulative grade point average in the last semester (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Expected Cumulative grade point average in the graduation (/4.00): (1: <2.00, 2: 2.00-2.49, 3: 2.50-2.99, 4: 3.00-3.49, 5: above 3.49); Course ID; and OUTPUT: Grade (0: Fail, 1: DD, 2: DC, 3: CC, 4: CB, 5: BB, 6: BA, 7: AA). The models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, and XGB classifier. Three feature scaling used in machine learning are raw, minmax scaler, and standard scaler. Finally, you will develop a GUI using PyQt5 to plot cross validation score, predicted values versus true values, confusion matrix, learning curve, decision boundaries, performance of the model, scalability of the model, training loss, and training accuracy.
The first project in chapter one, gui_optical_flow_robust_local.py, showcases Dense Robust Local Optical Flow (RLOF) through a graphical user interface (GUI) built using the OpenCV library within a tkinter framework. The project's functionality and structure are comprehensively organized, starting with the importation of essential libraries such as tkinter for GUI, PIL for image processing, imageio for video file reading, and OpenCV (cv2) for optical flow computations. The VideoDenseRLOFOpticalFlow class encapsulates the application's core functionality, initializing the GUI window, managing user interactions, and processing video frames for optical flow calculation and visualization. The GUI creation involves setting up widgets to display videos and control buttons for functions like opening files, playback control, and frame navigation. Optical flow is calculated using the Farneback method, and the resulting flow is visually presented alongside the original video frame. Mouse interaction capabilities enable users to pan the video frame and zoom in using the mouse wheel. Additionally, frame navigation features facilitate moving forward or backward through the video sequence. Error handling mechanisms are in place to provide informative messages during video processing. Overall, this project offers a user-friendly interface for exploring dense optical flow in video sequences, with potential for further customization and extension in optical flow research and applications. The second project in chapter one implements a graphical user interface (GUI) application for analyzing optical flow in video files using the Kalman filter. The application is built using the Tkinter library for the GUI components and OpenCV for image processing tasks such as optical flow computation. Upon execution, the application opens a window titled "Optical Flow Analysis with Kalman Filter" and provides functionalities for loading and playing video files. Users can open a video file through the "Open Video" button, which prompts a file dialog for file selection. Once a video file is chosen, the application loads it and displays the first frame on a canvas. The GUI includes controls for adjusting parameters such as the zoom scale, step size for optical flow computation, and displacement (dx and dy) for visualizing flow vectors. Users can interactively navigate through the video frames using buttons like "Play/Pause," "Stop," "Previous Frame," and "Next Frame." Additionally, there's an option to jump to a specific time in the video. The core functionality of the application lies in the show_optical_flow method, where optical flow is calculated using the Farneback method from OpenCV. The calculated optical flow is then filtered using a Kalman filter to improve accuracy and smoothness. The Kalman filter predicts the position of flow vectors and corrects them based on the measured flow values, resulting in more stable and reliable optical flow visualization. Overall, this application provides a user-friendly interface for visualizing optical flow in video files while incorporating a Kalman filter to enhance the quality of the flow estimation. It serves as a practical tool for researchers and practitioners in computer vision and motion analysis fields. The third project in chapter one presents a GUI application for visualizing optical flow through Lucas-Kanade estimation on video data. Utilizing Tkinter for GUI elements and integrating OpenCV, NumPy, Pillow, and imageio for video processing and visualization, the application opens a window titled "Optical Flow Analysis with Lucas Kanade" upon execution. Users can interact with controls to load video files, manipulate playback, adjust visualization parameters, and navigate frames. The GUI comprises video display, control, and optical flow panels, with functionalities including video loading, playback control, frame display, Lucas-Kanade optical flow computation, and error handling for stability. The VideoLucasKanadeOpticalFlow class encapsulates the application logic, defining event handlers for user interactions and facilitating seamless video interaction until window closure. The fourth project in chapter one features a graphical user interface (GUI) for visualizing Gaussian pyramid optical flow on video files, employing Tkinter for GUI components and OpenCV for optical flow calculation. Upon execution, the application opens a window titled "Gaussian Pyramid Optical Flow," enabling users to interact with video files. Controls include options for opening videos, adjusting zoom scale, setting step size for optical flow computation, and navigating frames. The core functionality revolves around the show_optical_flow method, which computes Gaussian pyramid optical flow using the Farneback method from OpenCV. This method calculates optical flow vectors between consecutive frames, visualized via lines and circles on an empty mask image displayed alongside the original video frame, facilitating the observation of motion patterns within the video. The "Face Detection in Video Using Haar Cascade" project as first project in chapter two, is aimed at detecting faces in video streams through Haar Cascade, a machine learning-based approach for object detection. The application offers a Tkinter-based graphical user interface (GUI) featuring functionalities like opening video files, controlling playback, adjusting zoom levels, and navigating frames. Upon selecting a video file, OpenCV processes each frame using the Haar Cascade classifier to detect faces, which are then outlined with rectangles. Users can interactively play, pause, stop, and navigate through video frames, observing real-time face detection. This project serves as a simple yet effective tool for visualizing and analyzing face detection in videos, suitable for educational and practical purposes. The "Object Tracking with Lucas Kanade" project is the second project in chapter two aimed at tracking objects within video streams using the Lucas-Kanade optical flow algorithm. Built with Tkinter for the graphical user interface (GUI) and OpenCV for video processing, it offers comprehensive functionalities for efficient object tracking. The GUI setup includes buttons for opening video files, playback control, and bounding box selection around objects of interest on the video display canvas. Video loading supports various formats, and playback features enable seamless navigation through frames. The core functionality lies in object tracking using the Lucas-Kanade algorithm, where bounding box coordinates are continuously updated based on estimated motion. Real-time GUI updates display current frames, frame numbers, and tracked object bounding boxes, while error handling ensures smooth user interaction. Overall, this project provides a user-friendly interface for accurate and efficient object tracking in video streams, making it a valuable tool for various applications. The third project in chapter two offers real-time object tracking in video streams using the Lucas-Kanade algorithm with Gaussian Pyramid for robust optical flow estimation. Its Tkinter-based graphical user interface (GUI) enables users to interact with the video stream, visualize tracking processes, and control parameters effectively. Upon application launch, users access controls for video loading, zoom adjustment, playback control, frame navigation, and center coordinate display clearance. The core track_object method tracks specified objects within video frames using Lucas-Kanade optical flow with Gaussian Pyramid, continuously updating bounding box coordinates for smooth and accurate tracking. As the video plays, users observe real-time motion of the tracked object's bounding box, reflecting its movement in the scene. With efficient frame processing, display updates, and intuitive controls, the application ensures a seamless user experience, suitable for diverse object tracking tasks. The fourth project in chapter two implements object tracking through the CAMShift (Continuously Adaptive Mean Shift) algorithm within a Tkinter-based graphical user interface (GUI). CAMShift, an extension of the Mean Shift algorithm, is tailored for object tracking in computer vision applications. Upon running the script, a window titled "Object Tracking with CAMShift" emerges, housing various GUI components. Users can open a video file via the "Open Video" button, loading supported formats such as .mp4, .avi, or .mkv. Playback controls allow for video manipulation, including play, pause, stop, and frame navigation, complemented by a zoom adjustment feature. During playback, the current frame number is displayed, aiding progress tracking. The core functionality centers on object tracking, where users can draw a bounding box around the object of interest on the video canvas. The CAMShift algorithm then continuously tracks this object within the bounding box across subsequent frames, updating its position in real-time. Additionally, the GUI presents the center coordinates of the bounding box in a list box, enhancing tracking insights. In summary, this script furnishes a user-friendly platform for object tracking via the CAMShift algorithm, facilitating visualization and analysis of object movement within video files. The fifth project in chapter two implements object tracking utilizing the MeanShift algorithm within a Tkinter-based graphical user interface (GUI). The script organizes its functionalities into five components: GUI Setup, GUI Components, Video Playback and Object Tracking, Bounding Box Interaction, and Main Function and Execution. Firstly, the script initializes the GUI window and essential attributes, including video file details and tracking status. Secondly, it structures the GUI layout, incorporating panels for video display and control buttons. Thirdly, methods for video playback control and object tracking are provided, enabling functionalities like opening video files, playing/pausing, and navigating frames. The MeanShift algorithm tracks objects within bounding boxes interactively manipulated by users through click-and-drag interactions. Lastly, the main function initializes the GUI application and starts the Tkinter event loop, launching the MeanShift-based object tracking interface. Overall, the project offers an intuitive platform for video playback, object tracking, and interactive bounding box manipulation, supporting diverse computer vision applications such as object detection and surveillance. The sixth project in chapter two introduces a video processing application utilizing the Kalman Filter for precise object tracking. Implemented with Tkinter, the application offers a graphical user interface (GUI) enabling users to open video files, control playback, and navigate frames. Its core objective is to accurately track a specified object across video frames. Upon initialization, the GUI elements, including control buttons, a canvas for video display, and a list box for center coordinate representation, are set up. The Kalman Filter, initialized with appropriate matrices for prediction and correction, enhances tracking accuracy. Upon opening a video file, the application loads and displays the first frame, enabling users to manipulate playback and frame navigation. During playback, the Kalman Filter algorithm is employed for object tracking. The track_object method orchestrates this process, extracting the region of interest (ROI), calculating histograms, and applying Kalman Filter prediction and correction steps to estimate the object's position. Updated bounding box coordinates are displayed on the canvas, while center coordinates are added to the list box. Overall, this user-friendly application showcases the Kalman Filter's effectiveness in video object tracking, providing smoother and more accurate results compared to traditional methods like MeanShift.
In this project, we provide you with the SQLite version of The Oracle Database Sample Schemas that provides a common platform for examples in each release of the Oracle Database. The sample database is also a good database for practicing with SQL, especially SQLite. The detailed description of the database can be found on: http://luna-ext.di.fc.ul.pt/oracle11g/server.112/e10831/diagrams.htm#insertedID0. The four schemas are a set of interlinked schemas. This set of schemas provides a layered approach to complexity: A simple schema Human Resources (HR) is useful for introducing basic topics. An extension to this schema supports Oracle Internet Directory demos; A second schema, Order Entry (OE), is useful for dealing with matters of intermediate complexity. Many data types are available in this schema, including non-scalar data types; The Online Catalog (OC) subschema is a collection of object-relational database objects built inside the OE schema; The Product Media (PM) schema is dedicated to multimedia data types; The Sales History (SH) schema is designed to allow for demos with large amounts of data. An extension to this schema provides support for advanced analytic processing. The HR schema consists of seven tables: regions, countries, locations, departments, employees, jobs, and job_histories. This book only implements HR schema, since the other schemas will be implemented in the next books.
This project leverages the power of data visualization and exploration to provide a comprehensive understanding of sales trends over time. Through an intuitive GUI built with Tkinter, users can seamlessly navigate through various aspects of their sales data. The journey begins with a detailed visualization of the dataset. This critical step allows users to grasp the overall structure, identify trends, and spot outliers. The application provides a user-friendly interface to interact with the data, offering an informative visual representation of the sales records. Moving forward, users can delve into the distribution of features within the dataset. This feature distribution analysis provides valuable insights into the characteristics of the sales data. It enables users to identify patterns, anomalies, and correlations among different attributes, paving the way for more accurate forecasting and prediction. One of the central functionalities of this application lies in its ability to perform sales forecasting using machine learning regressors. By employing powerful regression models, such as Random Forest Regressor, KNN regressor, Support Vector Regressor, AdaBoost regressor, Gradient Boosting Regressor, MLP regressor, Lasso regressor, and Ridge regressor, the application assists users in predicting future sales based on historical data. This empowers businesses to make informed decisions and plan for upcoming periods with greater precision. The application takes sales forecasting a step further by allowing users to fine-tune their models using Grid Search. This powerful optimization technique systematically explores different combinations of hyperparameters to find the optimal configuration for the machine learning models. This ensures that the models are fine-tuned for maximum accuracy in sales predictions. In addition to sales forecasting, the application addresses the critical issue of customer churn prediction. It identifies customers who are likely to churn based on a combination of features and behaviors. By employing a selection of machine learning models and Grid Search such as Random Forest Classifier, Support Vector Classifier, and K-Nearest Neighbors Classifier, Linear Regression Classifier, AdaBoost Classifier, Support Vector Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting Classifier, and Multi-Layer Perceptron Classifier, the application provides a robust framework for accurately predicting which customers are at risk of leaving. The project doesn't just stop at prediction; it also includes functionalities for evaluating model performance. Users can assess the accuracy, precision, recall, and F1-score of their models, allowing them to gauge the effectiveness of their forecasting and customer churn predictions. Furthermore, the application incorporates an intuitive user interface with widgets such as menus, buttons, listboxes, and comboboxes. These elements facilitate seamless interaction and navigation within the application, ensuring a user-friendly experience. To enhance user convenience, the application also supports data loading from external sources. It enables users to import their sales datasets directly into the application, streamlining the analysis process. The project is built on a foundation of modular and organized code. Each functionality is encapsulated within separate classes, promoting code reusability and maintainability. This ensures that the application is robust and can be easily extended or modified to accommodate future enhancements. You can download the dataset from: http://viviansiahaan.blogspot.com/2023/09/time-series-sales-forecasting-and.html.