Download Free Lead Refining By Electrolysis Book in PDF and EPUB Free Download. You can read online Lead Refining By Electrolysis and write the review.

Excerpt from Lead Refining by Electrolysis The electrolytic refining of lead bullion has now become an established metallurgical process, with further extensions confidently expected to come from time to time. Lead is almost an ideal metal to refine electrolytically, because its electrochemical equivalent is very high, and hence the power cost is small, and the depositing tanks are relatively smaller or fewer than for other common metals. Its casting into anodes is especially easy, and it stands high enough in the electrochemical scale to leave its impurities almost entirely in the anode slime, as metals, so there is no appreciable contamination of the electrolyte. The contained information is the result of a number of years of study, experiment and practical work, and is published in the hope that it will save those who may be interested in lead refining practice or its improvement the repetition of experiments already performed, and give them the benefit of the work already done by others and myself. Some space has been devoted to theoretical discussions of conductivity of electrolyte, etc., which I thought would be useful and instructive. The variety of methods of slime treatment which are discussed in Chapter II, may seem unnecessarily large from the practical standpoint, though I myself believe it is desirable to treat them at the length I have. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book.
The present chapter is devoted to the analysis of the obtained data on the high-temperature electrolytic production of high-purity lead from secondary lead in chloride melts. Kinetic parameters of electrode reactions were calculated, and the sequences of the metal dissolution from the double lead-antimony (Pb-Sb), lead-bismuth (Pb-Bi), and antimony-bismuth (Sb-Bi) alloys were determined. A long-term electrolysis of the antimony (battery scrap), bismuth (lead-bismuth), and lead-containing raw materials in the electrolytic cell of original construction with a porous ceramic diaphragm impregnated with the eutectic KCl-PbCl2 chloride electrolyte was performed. The anode lead alloy, containing 57.0¬†wt% of antimony and 36.0¬†wt% of bismuth, and cathode grade lead were obtained as a result of the electrolysis. The values of lead, antimony, and bismuth separation coefficients were calculated according to the values of the equilibrium potentials of the Pb-Sb, Pb-Bi, and Sb-Bi alloys. The values of separation coefficients were found to be 6.5¬∑106,Äì1.5¬∑108 for a single stage at the lead extraction from the Pb-Sb and Pb-Bi alloys, which proves the possibility of a highly effective lead extraction. The value of Sb-Bi alloy separation coefficient ranges from 5.5 to 6.5, which testifies the complexity and low effectiveness of the separation process. An electrolytic refining of lead-bismuth and secondary lead, obtained from the battery scrap, was performed.