Download Free Lattice Rules Book in PDF and EPUB Free Download. You can read online Lattice Rules and write the review.

Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.
This is the first book devoted to lattice methods, a recently developed way of calculating multiple integrals in many variables. Multiple integrals of this kind arise in fields such as quantum physics and chemistry, statistical mechanics, Bayesian statistics and many others. Lattice methods are an effective tool when the number of integrals are large. The book begins with a review of existing methods before presenting lattice theory in a thorough, self-contained manner, with numerous illustrations and examples. Group and number theory are included, but the treatment is such that no prior knowledge is needed. Not only the theory but the practical implementation of lattice methods is covered. An algorithm is presented alongside tables not available elsewhere, which together allow the practical evaluation of multiple integrals in many variables. Most importantly, the algorithm produces an error estimate in a very efficient manner. The book also provides a fast track for readers wanting to move rapidly to using lattice methods in practical calculations. It concludes with extensive numerical tests which compare lattice methods with other methods, such as the Monte Carlo.
This book is a compilation of the most important and widely applicable methods for evaluating and approximating integrals. It is an indispensable time saver for engineers and scientists needing to evaluate integrals in their work. From the table of contents: - Applications of Integration - Concepts and Definitions - Exact Analytical Methods - Appro
The topics in this volume constitute a fitting tribute by distinguished physicists and mathematicians. They cover strings, conformal field theories, W and Virasoro algebras, topological field theory, quantum groups, vertex and Hopf algebras, and non-commutative geometry. The relatively long contributions are pedagogical in style and address students as well as scientists.
Imagine living in a city where people could move freely and buildings could be replaced at minimal cost. Reality cannot be further from such. Despite this imperfect world in which we live, urban planning has become integral and critical especially in the face of rapid urbanization in many developing and developed countries. This book introduces the axiomatic/experimental approach to urban planning and addresses the criticism of the lack of a theoretical foundation in urban planning. With the rise of the complexity movement, the book is timely in its depiction of cities as complex systems and explains why planning from within is useful in the face of urban complexity. It also includes policy implications for the Chinese cities in the context of axiomatic/experimental planning theory.
This survey covers a wide range of topics fundamental to calculating integrals on computer systems and discusses both the theoretical and computational aspects of numerical and symbolic methods. It includes extensive sections on one- and multidimensional integration formulas, like polynomial, number-theoretic, and pseudorandom formulas, and deals with issues concerning the construction of numerical integration algorithms.
This book presents the refereed proceedings of the Seventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, held in Ulm, Germany, in August 2006. The proceedings include carefully selected papers on many aspects of Monte Carlo and quasi-Monte Carlo methods and their applications. They also provide information on current research in these very active areas.
This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.
This volume contains refereed papers and extended abstracts of papers presented at the NATO Advanced Research Workshop entitled 'Numerical Integration: Recent Develop ments, Software and Applications', held at the University of Bergen, Bergen, Norway, June 17-21,1991. The Workshop was attended by thirty-eight scientists. A total of eight NATO countries were represented. Eleven invited lectures and twenty-three contributed lectures were presented, of which twenty-five appear in full in this volume, together with three extended abstracts and one note. The main focus of the workshop was to survey recent progress in the theory of methods for the calculation of integrals and show how the theoretical results have been used in software development and in practical applications. The papers in this volume fall into four broad categories: numerical integration rules, numerical integration error analysis, numerical integration applications and numerical integration algorithms and software. It is five years since the last workshop of this nature was held, at Dalhousie University in Halifax, Canada, in 1986. Recent theoretical developments have mostly occurred in the area of integration rule construction. For polynomial integrating rules, invariant theory and ideal theory have been used to provide lower bounds on the numbers of points for different types of multidimensional rules, and to help in structuring the nonlinear systems which must be solved to determine the points and weights for the rules. Many new optimal or near optimal rules have been found for a variety of integration regions using these techniques.
This volume presents the revised papers of the 14th International Conference in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, MCQMC 2020, which took place online during August 10-14, 2020. This book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in statistics, machine learning, finance, and computer graphics, offering information on the latest developments in Monte Carlo and quasi-Monte Carlo methods and their randomized versions.