Download Free Lattice Gas Cellular Automata And Lattice Boltzmann Models Book in PDF and EPUB Free Download. You can read online Lattice Gas Cellular Automata And Lattice Boltzmann Models and write the review.

Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Articles review the diverse recent progress in the theory and development of lattice-gas and lattice Boltzmann methods and their applications. It features up-to-date articles, takes an interdisciplinary approach including mathematics, physical chemistry, and geophysics.
A self-contained, comprehensive introduction to the theory of hydrodynamic lattice gases.
Here is a basic introduction to Lattice Boltzmann models that emphasizes intuition and simplistic conceptualization of processes, while avoiding the complex mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those whose interest is in model application over detailed mathematics will find this a powerful 'quick start' guide. Example simulations, exercises, and computer codes are included.
This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids.Lattice gas methods are new parallel, high-resolution, high-efficiency techniques for solving partial differential equations. This volume focuses on progress in applying the lattice gas approach to partial differential equations that arise in simulating the flow of fluids. It introduces the lattice Boltzmann equation, a new direction in lattice gas research that considerably reduces fluctuations.The twenty-seven contributions explore the many available software options exploiting the fact that lattice gas methods are completely parallel, which produces significant gains in speed. Following an overview of work done in the past five years and a discussion of frontiers, the chapters describe viscosity modeling and hydrodynamic mode analyses, multiphase flows and porous media, reactions and diffusion, basic relations and long-time correlations, the lattice Boltzmann equation, computer hardware, and lattice gas applications.Gary D. Doolen is Acting Director of the Center for Nonlinear Studies at Los Alamos National Laboratory.
Certain forms of the Boltzmann equation, have emerged, which relinquish most mathematical complexities of the true Boltzmann equation. This text provides a detailed survey of Lattice Boltzmann equation theory and its major applications.
This book provides a self-contained introduction to cellular automata and lattice Boltzmann techniques. Beginning with a chapter introducing the basic concepts of this developing field, a second chapter describes methods used in cellular automata modeling. Following chapters discuss the statistical mechanics of lattice gases, diffusion phenomena, reaction-diffusion processes and non-equilibrium phase transitions. A final chapter looks at other models and applications, such as wave propagation and multiparticle fluids. With a pedagogic approach, the volume focuses on the use of cellular automata in the framework of equilibrium and non-equilibrium statistical physics. It also emphasises application-oriented problems such as fluid dynamics and pattern formation. The book contains many examples and problems. A glossary and a detailed bibliography are also included. This will be a valuable book for graduate students and researchers working in statistical physics, solid state physics, chemical physics and computer science.
This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.
Flowing matter is all around us, from daily-life vital processes (breathing, blood circulation), to industrial, environmental, biological, and medical sciences. Complex states of flowing matter are equally present in fundamental physical processes, far remote from our direct senses, such as quantum-relativistic matter under ultra-high temperature conditions (quark-gluon plasmas). Capturing the complexities of such states of matter stands as one of the most prominent challenges of modern science, with multiple ramifications to physics, biology, mathematics, and computer science. As a result, mathematical and computational techniques capable of providing a quantitative account of the way that such complex states of flowing matter behave in space and time are becoming increasingly important. This book provides a unique description of a major technique, the Lattice Boltzmann method to accomplish this task. The Lattice Boltzmann method has gained a prominent role as an efficient computational tool for the numerical simulation of a wide variety of complex states of flowing matter across a broad range of scales; from fully-developed turbulence, to multiphase micro-flows, all the way down to nano-biofluidics and lately, even quantum-relativistic sub-nuclear fluids. After providing a self-contained introduction to the kinetic theory of fluids and a thorough account of its transcription to the lattice framework, this text provides a survey of the major developments which have led to the impressive growth of the Lattice Boltzmann across most walks of fluid dynamics and its interfaces with allied disciplines. Included are recent developments of Lattice Boltzmann methods for non-ideal fluids, micro- and nanofluidic flows with suspended bodies of assorted nature and extensions to strong non-equilibrium flows beyond the realm of continuum fluid mechanics. In the final part, it presents the extension of the Lattice Boltzmann method to quantum and relativistic matter, in an attempt to match the major surge of interest spurred by recent developments in the area of strongly interacting holographic fluids, such as electron flows in graphene.