Download Free Lattice Effects In High Tc Superconductors Book in PDF and EPUB Free Download. You can read online Lattice Effects In High Tc Superconductors and write the review.

The focus of the workshop is the role of crystal lattices, i.e. atomic structure, phonons, lattice distortions, in the mechanism of high temperature superconductivity in oxides. In spite of the intense research effort during the last five years the mechanism of high temperature superconductivity still remains unknown. While earlier theories forcused primarily on the role of magnetic interaction, recent experimental results strongly suggest that anharmonic local atomic displacements, in particular those induced by charge carriers, are critically involved in creating high temperature superconductivity. In this workshop, experimentalists and theoreticians address this issue with the hope of stimulating real progress in this area.
Understanding the mechanism of the high-temperature superconductors has been a very important topic in condensed matter physics. Researchers have been trying to explain the role of electronphonon interaction (EPI) in cuprates. Some important properties of the cuprates could not be explained by conventional BCS theory. This book contains the experimental and theoretical studies on the EPI. The experimental part covers the results of angle-resolved photoemission spectroscopy (ARPES), isotopic effect, elastic neutron scattering study of electronphonon, lattice role and so on. The theoretical part covers the electronphonon, polaron and bipolaron, effect of lattice, fine structure in the tunnelling spectra of electron-doped cuprates, identification of the bulk pairing symmetry in high-temperature superconductors and effect of lattice. Students and researchers interested in high-temperature superconductors, especially the EPI in cuprates will find this title very useful.
Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.
Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Müller's ground-breaking research on SrTiO3.
This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.
After an introduction by J.G. Bednorz, describing the discovery of high Tc superconductivity and its consequences, the book goes on to describe modern research, dealing with general problems, new materials and structures, phase separation, electronic homogeneities and related problems, and applications. Specific systems dealt with include the La-cuprates. the Bi-cuprates and the Y-cuprates and related compounds.
This book presents theoretical as well as experimental articles focused on recent new results in high temperature superconductivity. All contributors are high ranking scientists who have done major work to enhance the understanding of this phenomenon. A few articles deal with ferroelectricity and its applications. The book is dedicated to Prof. Dr. K. Alex Müller on his 80th birthday. During his scientific career he made major advances in the understanding of ferroelectricity.
Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.
This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of complicated systems together with their corresponding qualitative characteristics and functional dependencies.