Download Free Lateral Electromagnetic Waves Book in PDF and EPUB Free Download. You can read online Lateral Electromagnetic Waves and write the review.

The propagation of waves along and across the boundary between two media with different characteristic velocities is much more complicated when the source is on or near the boundary than when it is far away and the incident waves are plane. Examples of waves generated by localized sources near a boundary are the electromagnetic waves from the currents in a dipole on the surface of the earth and the seismic waves from a slip event in a fault in the earth's crust like the San Andreas fault in California. Both involve a type of surface wave that is called a lateral wave in electro magnetics and a head wave in seismology. Since the two are analogous and the latter is more easily visualized, it is conveniently used here to introduce and describe this important type of surface wave using the data of Y. Ben Zion and P. Malin ("San Andreas Fault Zone Head Waves Near Parkfield, CA," Science 251, 1592-1594, 29 March 1991).
"Electromagnetic Fields in Stratified Media" deals with an important branch of electromagnetic theory, which has many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics. The book introduces to the electromagnetic theory and wave propagation in complex media, while presenting detailed models for various media: 3, 4, N-layered media, boundary conditions, and anisotropic media. In particular, the complete solutions for a trapped surface wave and lateral wave in a three- or four-layered region, the complete solutions for low frequency wave propagation over a spherical surface coated with a dielectric layer, and the transient field of a horizontal dipole in the boundary layer of two different media are presented. The book is designed for the scientists and engineers engaged in antennas and propagation, EM theory and applications. Dr. Kai Li is Professor at Zhejiang University.
International Series of Monographs in Electromagnetic Waves, Volume 11: Electromagnetic Wave Theory, Part 1 covers the proceedings of an International Scientific Radio Union (U.R.S.I.) Symposium on Electromagnetic Wave Theory. The book contains 61 chapters that are organized into three sections. The first section presents papers about wave propagation, which includes lateral waves; terrestrial waveguides; and plane waves in dissipative media. Next, the title reviews studies about wave guides, including basic properties of periodic waveguides; theoretical investigation of non-uniform waveguides; and waves in a coaxial line partially filled with plasma. The last section covers topics about surface waves, such as a dielectric prism in the corner of overmoded waveguide; lasers and optical communication systems; and microwave and laser resonators. The text will be of great use to researchers and practitioners of disciplines that study or utilize electromagnetic wave technologies, such as electrotechnics and electrical engineering.
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagnetic waves from planar stratified media. Other chapters consider the oblique reflection of plane electromagnetic waves from a continuously stratified medium. This book discusses as well the fundamental theory of wave propagation around a sphere. The final chapter deals with the theory of propagation in a spherically stratified medium. This book is a valuable resource for electrical engineers, scientists, and research workers.
International Conference on Remote Sensing and Wireless Communications (RSWC 2014) will be held from February 22nd to 23rd, 2014 in Shanghai, China. RSWC 2014 will bring together top researchers from Asian Pacific areas, North America, Europe and around the world to exchange research results and address open issues in all aspects of Remote Sensing and Wireless Communications. The RSWC 2014 welcomes the submission of original full research papers, short papers, posters, workshop proposals, tutorials, and industrial professional reports.
The papers published in these proceedings represent the latest developments in the nondestructive characterization of materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 2002, in Berlin, Germany.
This book explains how to design, analyse and test cylindrical antenna arrays from a practical engineering standpoint. Written by three of the leading engineers in the field, this book is destined to become established as the basic reference in the field for many years to come.
Selected, peer reviewed papers from the 2012 International Conference on Information Technology and Management Innovation (ICITMI 2012), November 10-11, 2012, Guangzhou, China