Download Free Late Quaternary Paleoceanography And Paleoclimate Of The North Atlantic Ocean Book in PDF and EPUB Free Download. You can read online Late Quaternary Paleoceanography And Paleoclimate Of The North Atlantic Ocean and write the review.

The focus of this book is on oceanic climate change during the last deglaciation period and the high temporal resolution that can be obtained from sediment records at continental margin sites. The book draws together papers from the north-eastern North American continental margin with those from the north-west European Arctic and the Arctic and North Atlantic Oceans.
The South Atlantic plays a critical role in the couplingofoceanic processes between the Antarctic and the lower latitudes. The Antarctic Ocean, along with the adjacent southern seas, is of substantial importance for global climate and for the distributionofwater masses because itprovides large regions ofthe world ocean with intermediate and bottom waters. In contrast to the North Atlantic, the Southern Ocean acts more as an "information distributor", as opposed to an amplifier. Just as the North Atlantic is influencedby the South Atlantic through the contributionofwarm surface water,the incomingsupply ofNADW - in the area of the Southern Ocean as Circumantarctic Deep Water - influences the oceanography ofthe Antarctic. The competing influences from the northern and southern oceans on the current and mass budget systems can be best studied in the South Atlantic. Not only do changes in the current systems in the eastern Atlantic high-production regions affect the energy budget, they also influence the nutrient inventories, and therefore impact the entire productivity ofthe ocean. In addition, the broad region of the polar front is a critical area with respect to productivity-related circulation since it is the source of Antarctic Intermediate Water. Although theAntarctic Intermediate Watertoday liesdeeper than the water that rises in the upwelling regions, it is the long-term source ofnutrients that are ultimately responsible for the supply oforganic matter to the sea floor and to sediments.
The second revised edition of the Encyclopedia of Quaternary Science, Four Volume Set, provides both students and professionals with an up-to-date reference work on this important and highly varied area of research. There are lots of new articles, and many of the articles that appeared in the first edition have been updated to reflect advances in knowledge since 2006, when the original articles were written. The second edition will contain about 375 articles, written by leading experts around the world. This major reference work is richly illustrated with more than 3,000 illustrations, most of them in colour. Research in the Quaternary sciences has advanced greatly in the last 10 years, especially since topics like global climate change, geologic hazards and soil erosion were put high on the political agenda. This second edition builds upon its award-winning predecessor to provide the reader assured quality along with essential updated coverage Contains 357 broad-ranging articles (4310 pages) written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. Facilitates teaching and learning The first edition was regarded by many as the most significant single overview of Quaternary science ever, yet Editor-in-Chief, Scott Elias, has managed to surpass that in this second edition by securing even more expert reviews whilst retaining his renowned editorial consistency that enables readers to navigates seamlessly from one unfamiliar topic to the next
"When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes, This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate." --Book Jacket.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 158. The world's largest positive temperature deviation from zonal mean temperatures lies within the realm of the Nordic Seas, comprising bodies of water variously referred to as the Norwegian Sea, the Iceland Sea, and the Greenland Sea. Its role as a mixing cauldron for waters entering from the North Atlantic and the Arctic Oceans, and its function as a major source of deep and abyss water, make our understanding of the Nordic Seas a crucial element in advancing the knowledge of climate dynamics in the Northern Hemisphere. In this context, its small extent (covering only 0.75% of the area of the world's oceans) and its unique location, which allows for accessibility and detailed exploration, are of special significance. The current book speaks to that significance specifically and also to assessing the region's present and future response to, and influence on, global climate change. It is the first such work since B. G. Hurdle's groundbreaking The Nordic Seas (published in 1986).
The northern North Atlantic is one of the regions most sensitive to past and present global changes. This book integrates the results of an interdisciplinary project studying the properties of the Greenland-Iceland-Norwegian Seas and the processes of pelagic and benthic particle formation, particle transport, and deposition in the deep-sea sediments. Ice-related and biogeochemical processes have been investigated to decipher the spatial and temporal variability of the production and fate of organic carbon in this region. Isotopic stratigraphy, microfossil assemblages and paleotemperatures are combined to reconstruct paleoceanographic conditions and to model past climatic changes in the Late Quaternary. The Greenland-Iceland-Norwegian Seas can now be considered one of the best studied subbasins of the world`s oceans.
The quaternary sciences constitute a dynamic, multidisciplinary field of research that has been growing in scientific and societal importance in recent years. This branch of the Earth sciences links ancient prehistory to modern environments. Quaternary terrestrial sediments contain the fossil remains of existing species of flora and fauna, and their immediate predecessors. Quaternary science plays an integral part in such important issues for modern society as groundwater resources and contamination, sea level change, geologic hazards (earthquakes, volcanic eruptions, tsunamis), and soil erosion. With over 360 articles and 2,600 pages, many in full-color, the Encyclopedia of Quaternary Science provides broad ranging, up-to-date articles on all of the major topics in the field. Written by a team of leading experts and under the guidance of an international editorial board, the articles are at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Also available online via ScienceDirect (2006) – featuring extensive browsing, searching, and internal cross-referencing between articles in the work, plus dynamic linking to journal articles and abstract databases, making navigation flexible and easy. For more information, pricing options and availability visit www.info.sciencedirect.com. 360 individual articles written by prominent international authorities, encompassing all important aspects of quaternary science Each entry provides comprehensive, in-depth treatment of an overview topic and presented in a functional, clear and uniform layout Reference section provides guidence for further research on the topic Article text supported by full-color photos, drawings, tables, and other visual material Writing level is suited to both the expert and non-expert