Download Free Laser Optics 2006 Book in PDF and EPUB Free Download. You can read online Laser Optics 2006 and write the review.

An introduction to photonics and lasers that does not rely on complex mathematics This book evolved from a series of courses developed by the author and taught in the areas of lasers and photonics. This thoroughly classroom-tested work fills a unique need for students, instructors, and industry professionals in search of an introductory-level book that covers a wide range of topics in these areas. Comparable books tend to be aimed either too high or too low, or they cover only a portion of the topics that are needed for a comprehensive treatment. Photonics and Lasers is divided into four parts: * Propagation of Light * Generation and Detection of Light * Laser Light * Light-Based Communication The author has ensured that complex mathematics does not become an obstacle to understanding key physical concepts. Physical arguments and explanations are clearly set forth while, at the same time, sufficient mathematical detail is provided for a quantitative understanding. As an additional aid to readers who are learning to think symbolically, some equations are expressed in words as well as symbols. Problem sets are provided throughout the book for readers to test their knowledge and grasp of key concepts. A solutions manual is also available for instructors. Finally, the detailed bibliography leads readers to in-depth explorations of particular topics. The book's topics, lasers and photonics, are often treated separately in other texts; however, the author skillfully demonstrates their natural synergy. Because of the combined coverage, this text can be used for a two-semester course or a one-semester course emphasizing either lasers or photonics. This is a perfect introductory textbook for both undergraduate and graduate students, additionally serving as a practical reference for engineers in telecommunications, optics, and laser electronics.
Dieses Buch ist genau richtig für Einsteiger in das Fachgebiet. Schwierige Effekte werden direkt und leicht verständlich präsentiert. Diese aktualisierte, erweiterte Auflage bietet neue Kapitel zu neuen Themen wie Plasmonik, Frequenzkämme auf Femto-Ebene und Quantenkaskadenlaser
The invention of the laser in 1960 provided mankind with a unique source of light, which is highly directional, spectrally pure and extremely bright. The development of such a unique source of light ushered in a large number of applications in many diverse areas such as communications, medicine, defence, etc. Besides, lasers have found numerous commercial uses and the number of such applications is still rising. Today, light wave communication using hair-thin optical fibers of glass has truly revolutionised communication and has been primarily responsible for the Internet explosion. Salient Features " An introductory, easy-to-understand and purely non-mathematical text "Covers state-of-the-art developments in the field of fiber optics - fiber amplifiers, dispersion compensation and non-linear effects "Discusses basics of lasers with emphasis on special properties and applications "Adopts an application-oriented approach applications explained with interesting illustrations "Provides examples and comparisons from day-to-day experience, wherever feasible, to make readers understand by correlation of known facts The book is designed to serve as a popular reference on fiber optics and lasers. It will not only interest general readers and students, but will also serve as a useful reference to working professionals in the field of lasers and fiber-optic communication system.
Principles of Lasers and Optics, first published in 2005, describes both the fundamental principles of the laser and the propagation and application of laser radiation in bulk and guided-wave components. All solid state, gas and semiconductor lasers are analysed uniformly as macroscopic devices with susceptibility originated from quantum mechanical interactions to develop an overall understanding of the coherent nature of laser radiation. Analyses of the unique properties of coherent laser light in bulk and guided-wave components are presented together and derived from fundamental principles, to allow students to appreciate the differences and similarities. Topics covered include discussions on how laser radiation should be analysed, the macroscopic differences and similarities of various analyses, special techniques, types of lasers and setting up laser analyses. This text will be useful for first-year graduates in electrical engineering and physics and also as a reference book on analytical techniques.
This book has once again been updated to keep pace with recent developments and to maintain Koechner's position as "the bible" of the field. Written from an industrial perspective, it provides a detailed discussion of, and data for, solid-state lasers, their characteristics, design and construction.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.
Covering a broad range of topics in modern optical physics and engineering, this textbook is invaluable for undergraduate students studying laser physics, optoelectronics, photonics, applied optics and optical engineering. This new edition has been re-organized, and now covers many new topics such as the optics of stratified media, quantum well lasers and modulators, free electron lasers, diode-pumped solid state and gas lasers, imaging and non-imaging optical systems, squeezed light, periodic poling in nonlinear media, very short pulse lasers and new applications of lasers. The textbook gives a detailed introduction to the basic physics and engineering of lasers, as well as covering the design and operational principles of a wide range of optical systems and electro-optic devices. It features full details of important derivations and results, and provides many practical examples of the design, construction and performance characteristics of different types of lasers and electro-optic devices.
A comprehensive introduction to the burgeoning field of photonics The field of photonics is finding increasing applications across a broad range of industries. While many other books provide an overview of the subject, Fundamentals of Light Sources and Lasers closes a clear gap in the current literature by concentrating on the principles of laser operation as well as providing coverage of important concepts necessary to fully understand the principles involved. The scope of the book includes everything a professional needs to get up to speed in the field, as well as all the material necessary to serve as an excellent introductory laser course for students. Ideal for self-study as well as structured coursework, the book offers thorough coverage of: * The nature of light and atomic emission * Basic quantum mechanics and laser processes * Cavity optics, fast-pulse production, and nonlinear optical phenomena * Laser technology, including visible gas lasers, UV gas lasers, infrared gas lasers, solid-state lasers, semiconductor lasers and tunable dye lasers Extensive real-world case studies are included to help readers appreciate the practical applications of the material covered. *An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.